Cargando…

Recent Advances of Diketopyrrolopyrrole Derivatives in Cancer Therapy and Imaging Applications

Cancer is threatening the survival of human beings all over the world. Phototherapy (including photothermal therapy (PTT) and photodynamic therapy (PDT)) and bioimaging are important tools for imaging–mediated cancer theranostics. Diketopyrrolopyrrole (DPP) dyes have received more attention due to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Lingyun, Lai, Bihong, Ran, Xueguang, Tang, Hao, Cao, Derong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221687/
https://www.ncbi.nlm.nih.gov/pubmed/37241837
http://dx.doi.org/10.3390/molecules28104097
Descripción
Sumario:Cancer is threatening the survival of human beings all over the world. Phototherapy (including photothermal therapy (PTT) and photodynamic therapy (PDT)) and bioimaging are important tools for imaging–mediated cancer theranostics. Diketopyrrolopyrrole (DPP) dyes have received more attention due to their high thermal and photochemical stability, efficient reactive oxygen species (ROS) generation and thermal effects, easy functionalization, and tunable photophysical properties. In this review, we outline the latest achievements of DPP derivatives in cancer therapy and imaging over the past three years. DPP-based conjugated polymers and small molecules for detection, bioimaging, PTT, photoacoustic imaging (PAI)-guided PTT, and PDT/PTT combination therapy are summarized. Their design principles and chemical structures are highlighted. The outlook, challenges, and future opportunities for the development of DPP derivatives are also presented, which will give a future perspective for cancer treatment.