Cargando…

NMR Magnetometer Based on Dynamic Nuclear-Polarization for Low-Strength Magnetic Field Measurement

Nuclear magnetic resonance (NMR) magnetometers are considered due to their ability to map magnetic fields with high precision and calibrate other magnetic field measurement devices. However, the low signal-to-noise ratio of low-strength magnetic fields limits the precision when measuring magnetic fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, Taoning, He, Wei, Wan, Cai, Zhang, Yuxiang, Xu, Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221733/
https://www.ncbi.nlm.nih.gov/pubmed/37430578
http://dx.doi.org/10.3390/s23104663
Descripción
Sumario:Nuclear magnetic resonance (NMR) magnetometers are considered due to their ability to map magnetic fields with high precision and calibrate other magnetic field measurement devices. However, the low signal-to-noise ratio of low-strength magnetic fields limits the precision when measuring magnetic fields below 40 mT. Therefore, we developed a new NMR magnetometer that combines the dynamic nuclear polarization (DNP) technique with pulsed NMR. The dynamic pre-polarization technique enhances the SNR under a low magnetic field. Pulsed NMR was used in conjunction with DNP to improve measurement accuracy and speed. The efficacy of this approach was validated through simulation and analysis of the measurement process. Next, a complete set of equipment was constructed, and we successfully measured magnetic fields of 30 mT and 8 mT with an accuracy of only 0.5 Hz (11 nT) at 30 mT (0.4 ppm) and 1 Hz (22 nT) at 8mT (3 ppm).