Cargando…
Dynamic calibration with approximate Bayesian computation for a microsimulation of disease spread
The global COVID-19 pandemic brought considerable public and policy attention to the field of infectious disease modelling. A major hurdle that modellers must overcome, particularly when models are used to develop policy, is quantifying the uncertainty in a model’s predictions. By including the most...
Autores principales: | Asher, Molly, Lomax, Nik, Morrissey, Karyn, Spooner, Fiona, Malleson, Nick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221755/ https://www.ncbi.nlm.nih.gov/pubmed/37244962 http://dx.doi.org/10.1038/s41598-023-35580-z |
Ejemplares similares
-
A dynamic microsimulation model for epidemics
por: Spooner, Fiona, et al.
Publicado: (2021) -
Sequentially calibrating a Bayesian microsimulation model to incorporate new information and assumptions
por: DeYoreo, Maria, et al.
Publicado: (2022) -
Selecting Summary Statistics in Approximate Bayesian Computation for Calibrating Stochastic Models
por: Burr, Tom, et al.
Publicado: (2013) -
Approximate Bayesian Computation
por: Sunnåker, Mikael, et al.
Publicado: (2013) -
The spread of agriculture in Iberia through Approximate Bayesian Computation and Neolithic projectile tools
por: Cortell-Nicolau, Alfredo, et al.
Publicado: (2021)