Cargando…

The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property

The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni–Zn ferrite intercalated EG (NZF/EG) is provided in...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiang, Ning, Zhou, Zunning, Ma, Xiaoxia, Zhang, Huichao, Xu, Xiangyuan, Chen, Yongpeng, Guo, Zerong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221791/
https://www.ncbi.nlm.nih.gov/pubmed/37241869
http://dx.doi.org/10.3390/molecules28104128
_version_ 1785049540723736576
author Xiang, Ning
Zhou, Zunning
Ma, Xiaoxia
Zhang, Huichao
Xu, Xiangyuan
Chen, Yongpeng
Guo, Zerong
author_facet Xiang, Ning
Zhou, Zunning
Ma, Xiaoxia
Zhang, Huichao
Xu, Xiangyuan
Chen, Yongpeng
Guo, Zerong
author_sort Xiang, Ning
collection PubMed
description The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni–Zn ferrite intercalated EG (NZF/EG) is provided in order to promote the insertion of Ni–Zn ferrite particles (NZF) into the interlayers of EG. The NZF/EG composite is in situ prepared via thermal treatment of Ni–Zn ferrite precursor intercalated graphite (NZFP/GICs) at 900 °C, where NZFP/GICs is obtained through chemical coprecipitation. The morphology and phase characterization demonstrate the successful cation intercalation and NZF generation in the interlayers of EG. Furthermore, the molecular dynamics simulation shows that the magnetic particles in the EG layers tend to disperse on the EG layers rather than aggregate into larger clusters under the synergy of van der Waals forces, repulsive force, and dragging force. The radar wave attenuation mechanism and performance of NZF/EG with different NZF ratios are analyzed and discussed in the range of 2–18 GHz. The NZF/EG with the NZF ratio at 0.5 shows the best radar wave attenuation ability due to the fact that the dielectric property of the graphite layers is well retained while the area of the heterogeneous interface is increased. Therefore, the as-prepared NZF/EG composites have potential application value in attenuating radar centimeter waves.
format Online
Article
Text
id pubmed-10221791
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102217912023-05-28 The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property Xiang, Ning Zhou, Zunning Ma, Xiaoxia Zhang, Huichao Xu, Xiangyuan Chen, Yongpeng Guo, Zerong Molecules Article The composites of expanded graphite (EG) and magnetic particles have good electromagnetic wave attenuation properties in the centimeter band, which is valuable in the field of radar wave interference. In this paper, a novel preparation method of Ni–Zn ferrite intercalated EG (NZF/EG) is provided in order to promote the insertion of Ni–Zn ferrite particles (NZF) into the interlayers of EG. The NZF/EG composite is in situ prepared via thermal treatment of Ni–Zn ferrite precursor intercalated graphite (NZFP/GICs) at 900 °C, where NZFP/GICs is obtained through chemical coprecipitation. The morphology and phase characterization demonstrate the successful cation intercalation and NZF generation in the interlayers of EG. Furthermore, the molecular dynamics simulation shows that the magnetic particles in the EG layers tend to disperse on the EG layers rather than aggregate into larger clusters under the synergy of van der Waals forces, repulsive force, and dragging force. The radar wave attenuation mechanism and performance of NZF/EG with different NZF ratios are analyzed and discussed in the range of 2–18 GHz. The NZF/EG with the NZF ratio at 0.5 shows the best radar wave attenuation ability due to the fact that the dielectric property of the graphite layers is well retained while the area of the heterogeneous interface is increased. Therefore, the as-prepared NZF/EG composites have potential application value in attenuating radar centimeter waves. MDPI 2023-05-16 /pmc/articles/PMC10221791/ /pubmed/37241869 http://dx.doi.org/10.3390/molecules28104128 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Xiang, Ning
Zhou, Zunning
Ma, Xiaoxia
Zhang, Huichao
Xu, Xiangyuan
Chen, Yongpeng
Guo, Zerong
The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title_full The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title_fullStr The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title_full_unstemmed The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title_short The In Situ Preparation of Ni–Zn Ferrite Intercalated Expanded Graphite via Thermal Treatment for Improved Radar Attenuation Property
title_sort in situ preparation of ni–zn ferrite intercalated expanded graphite via thermal treatment for improved radar attenuation property
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221791/
https://www.ncbi.nlm.nih.gov/pubmed/37241869
http://dx.doi.org/10.3390/molecules28104128
work_keys_str_mv AT xiangning theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT zhouzunning theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT maxiaoxia theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT zhanghuichao theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT xuxiangyuan theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT chenyongpeng theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT guozerong theinsitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT xiangning insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT zhouzunning insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT maxiaoxia insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT zhanghuichao insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT xuxiangyuan insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT chenyongpeng insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty
AT guozerong insitupreparationofniznferriteintercalatedexpandedgraphiteviathermaltreatmentforimprovedradarattenuationproperty