Cargando…
Improved YOLOv5 Network for Real-Time Object Detection in Vehicle-Mounted Camera Capture Scenarios
Object detection in the process of driving is a convenient and efficient task. However, due to the complex transformation of the road environment and vehicle speed, the scale of the target will not only change significantly but also be accompanied by the phenomenon of motion blur, which will have a...
Autores principales: | Ren, Zuyue, Zhang, Hong, Li, Zan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221932/ https://www.ncbi.nlm.nih.gov/pubmed/37430502 http://dx.doi.org/10.3390/s23104589 |
Ejemplares similares
-
Moving Object Detection on a Vehicle Mounted Back-Up Camera
por: Kim, Dong-Sun, et al.
Publicado: (2015) -
A Real-Time Object Detector for Autonomous Vehicles Based on YOLOv4
por: Wang, Rui, et al.
Publicado: (2021) -
YOLOv5s-Fog: An Improved Model Based on YOLOv5s for Object Detection in Foggy Weather Scenarios
por: Meng, Xianglin, et al.
Publicado: (2023) -
Real-time vehicle target detection in inclement weather conditions based on YOLOv4
por: Wang, Rui, et al.
Publicado: (2023) -
An Improved YOLOv2 for Vehicle Detection
por: Sang, Jun, et al.
Publicado: (2018)