Cargando…

Vitamin D Status Determines Cardiometabolic Effects of Cabergoline in Women with Elevated Prolactin Levels: A Pilot Study

Both hyperprolactinemia and vitamin D deficiency appear to be associated with increased cardiometabolic risk. This study aimed to determine whether vitamin D status influences the cardiometabolic effects of cabergoline. The study included three matched groups of women with mild to moderate hyperprol...

Descripción completa

Detalles Bibliográficos
Autores principales: Krysiak, Robert, Basiak, Marcin, Machnik, Grzegorz, Szkróbka, Witold, Okopień, Bogusław
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221981/
https://www.ncbi.nlm.nih.gov/pubmed/37242186
http://dx.doi.org/10.3390/nu15102303
Descripción
Sumario:Both hyperprolactinemia and vitamin D deficiency appear to be associated with increased cardiometabolic risk. This study aimed to determine whether vitamin D status influences the cardiometabolic effects of cabergoline. The study included three matched groups of women with mild to moderate hyperprolactinemia: vitamin D-naive subjects with vitamin D insufficiency (group A), women with vitamin D deficiency/insufficiency successfully treated with vitamin D (group B), and vitamin D-naive individuals with normal vitamin D status (group C). Plasma prolactin, 25-hydroxyvitamin D, estradiol, glucose homeostasis markers, lipids, high-sensitivity C-reactive protein (hsCRP), fibrinogen, homocysteine, and uric acid, as well as the urinary albumin-to-creatinine ratio (UACR), were measured at study entry and after four months of cabergoline treatment. Although cabergoline reduced prolactin levels and increased estradiol levels in all study groups, the effect on prolactin was more pronounced in groups B and C compared to group A. In groups B and C, the drug enhanced glucose homeostasis, increased HDL-cholesterol, and decreased triglycerides, hsCRP, fibrinogen, homocysteine, uric acid, and UACR. In group A, only insulin resistance, hsCRP, and homocysteine were reduced by cabergoline. The effects on insulin sensitivity, HDL-cholesterol, triglycerides, hsCRP, fibrinogen, homocysteine, uric acid, and UACR were proportional to the decrease in prolactin and baseline levels of 25-hydroxyvitamin D. The obtained results suggest that vitamin D status determines cabergoline’s cardiometabolic effects.