Cargando…
Multi-Label Classification in Anime Illustrations Based on Hierarchical Attribute Relationships
In this paper, we propose a hierarchical multi-modal multi-label attribute classification model for anime illustrations using a graph convolutional network (GCN). Our focus is on the challenging task of multi-label attribute classification, which requires capturing subtle features intentionally high...
Autores principales: | Lan, Ziwen, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222001/ https://www.ncbi.nlm.nih.gov/pubmed/37430712 http://dx.doi.org/10.3390/s23104798 |
Ejemplares similares
-
Tensor-Based Emotional Category Classification via Visual Attention-Based Heterogeneous CNN Feature Fusion
por: Moroto, Yuya, et al.
Publicado: (2020) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Zero-Shot Neural Decoding with Semi-Supervised Multi-View Embedding
por: Akamatsu, Yusuke, et al.
Publicado: (2023) -
Estimation of Degradation Degree in Road Infrastructure Based on Multi-Modal ABN Using Contrastive Learning
por: Higashi, Takaaki, et al.
Publicado: (2023) -
Regularization Meets Enhanced Multi-Stage Fusion Features: Making CNN More Robust against White-Box Adversarial Attacks
por: Zhang, Jiahuan, et al.
Publicado: (2022)