Cargando…

A Novel Approach for Efficient Solar Panel Fault Classification Using Coupled UDenseNet

Photovoltaic (PV) systems have immense potential to generate clean energy, and their adoption has grown significantly in recent years. A PV fault is a condition of a PV module that is unable to produce optimal power due to environmental factors, such as shading, hot spots, cracks, and other defects....

Descripción completa

Detalles Bibliográficos
Autores principales: Pamungkas, Radityo Fajar, Utama, Ida Bagus Krishna Yoga, Jang, Yeong Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222028/
https://www.ncbi.nlm.nih.gov/pubmed/37430831
http://dx.doi.org/10.3390/s23104918
Descripción
Sumario:Photovoltaic (PV) systems have immense potential to generate clean energy, and their adoption has grown significantly in recent years. A PV fault is a condition of a PV module that is unable to produce optimal power due to environmental factors, such as shading, hot spots, cracks, and other defects. The occurrence of faults in PV systems can present safety risks, shorten system lifespans, and result in waste. Therefore, this paper discusses the importance of accurately classifying faults in PV systems to maintain optimal operating efficiency, thereby increasing the financial return. Previous studies in this area have largely relied on deep learning models, such as transfer learning, with high computational requirements, which are limited by their inability to handle complex image features and unbalanced datasets. The proposed lightweight coupled UdenseNet model shows significant improvements for PV fault classification compared to previous studies, achieving an accuracy of 99.39%, 96.65%, and 95.72% for 2-class, 11-class, and 12-class output, respectively, while also demonstrating greater efficiency in terms of parameter counts, which is particularly important for real-time analysis of large-scale solar farms. Furthermore, geometric transformation and generative adversarial networks (GAN) image augmentation techniques improved the model’s performance on unbalanced datasets.