Cargando…
Thermal and Oxidative Aging Effects of Polyamide-11 Powder Used in Multi-Jet Fusion
The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed multi-jet fusion (...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222145/ https://www.ncbi.nlm.nih.gov/pubmed/37242970 http://dx.doi.org/10.3390/polym15102395 |
Sumario: | The transition of additive manufacturing (AM) from a technique for rapid prototyping to one for manufacturing of near net or net components has been led by the development of methods that can repeatedly fabricate quality parts. High-speed laser sintering and the recently developed multi-jet fusion (MJF) processes have seen quick adoption from industry due to their ability to produce high-quality components relatively quickly. However, the recommended refresh ratios of new powder led to notable amounts of used powder being discarded. In this research, polyamide-11 powder, typically used in AM, was thermally aged to investigate its properties at extreme levels of reuse. The powder was exposed to 180 °C in air for up to 168 h and its chemical, morphological, thermal, rheological, and mechanical properties were examined. To decouple the thermo-oxidative aging phenomena from AM process related effects, such as porosity, rheological and mechanical properties characterisation was performed on compression-moulded specimens. It was found that exposure notably affected the properties of both the powder and the derived compression-moulded specimens within the first 24 h of exposure; however, consecutive exposure did not have a significant effect. |
---|