Cargando…

Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils

The priming effect (PE) occurs when fresh organic matter (FOM) supplied to soil alters the rate of decomposition of older soil organic matter (SOM). The PE can be generated by different mechanisms driven by interactions between microorganisms with different live strategies and decomposition abilitie...

Descripción completa

Detalles Bibliográficos
Autores principales: Jaillard, Benoît, Razanamalala, Kanto, Violle, Cyrille, Bernard, Laetitia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222199/
https://www.ncbi.nlm.nih.gov/pubmed/37317080
http://dx.doi.org/10.3390/microorganisms11051106
_version_ 1785049640180121600
author Jaillard, Benoît
Razanamalala, Kanto
Violle, Cyrille
Bernard, Laetitia
author_facet Jaillard, Benoît
Razanamalala, Kanto
Violle, Cyrille
Bernard, Laetitia
author_sort Jaillard, Benoît
collection PubMed
description The priming effect (PE) occurs when fresh organic matter (FOM) supplied to soil alters the rate of decomposition of older soil organic matter (SOM). The PE can be generated by different mechanisms driven by interactions between microorganisms with different live strategies and decomposition abilities. Among those, stoichiometric decomposition results from FOM decomposition, which induces the decomposition of SOM by the release of exoenzymes by FOM-decomposers. Nutrient mining results from the co-metabolism of energy-rich FOM with nutrient-rich SOM by SOM-decomposers. While existing statistical approaches enable measurement of the effect of community composition (linear effect) on the PE, the effect of interactions among co-occurring populations (non-linear effect) is more difficult to grasp. We compare a non-linear, clustering approach with a strictly linear approach to separately and comprehensively capture all linear and non-linear effects induced by soil microbial populations on the PE and to identify the species involved. We used an already published data set, acquired from two climatic transects of Madagascar Highlands, in which the high-throughput sequencing of soil samples was applied parallel to the analysis of the potential capacity of microbial communities to generate PE following a (13)C-labeled wheat straw input. The linear and clustering approaches highlight two different aspects of the effects of microbial biodiversity on SOM decomposition. The comparison of the results enabled identification of bacterial and fungal families, and combinations of families, inducing either a linear, a non-linear, or no effect on PE after incubation. Bacterial families mainly favoured a PE proportional to their relative abundances in soil (linear effect). Inversely, fungal families induced strong non-linear effects resulting from interactions among them and with bacteria. Our findings suggest that bacteria support stoichiometric decomposition in the first days of incubation, while fungi support mainly the nutrient mining of soil’s organic matter several weeks after the beginning of incubation. Used together, the clustering and linear approaches therefore enable the estimation of the relative importance of linear effects related to microbial relative abundances, and non-linear effects related to interactions among microbial populations on soil properties. Both approaches also enable the identification of key microbial families that mainly regulate soil properties.
format Online
Article
Text
id pubmed-10222199
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102221992023-05-28 Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils Jaillard, Benoît Razanamalala, Kanto Violle, Cyrille Bernard, Laetitia Microorganisms Article The priming effect (PE) occurs when fresh organic matter (FOM) supplied to soil alters the rate of decomposition of older soil organic matter (SOM). The PE can be generated by different mechanisms driven by interactions between microorganisms with different live strategies and decomposition abilities. Among those, stoichiometric decomposition results from FOM decomposition, which induces the decomposition of SOM by the release of exoenzymes by FOM-decomposers. Nutrient mining results from the co-metabolism of energy-rich FOM with nutrient-rich SOM by SOM-decomposers. While existing statistical approaches enable measurement of the effect of community composition (linear effect) on the PE, the effect of interactions among co-occurring populations (non-linear effect) is more difficult to grasp. We compare a non-linear, clustering approach with a strictly linear approach to separately and comprehensively capture all linear and non-linear effects induced by soil microbial populations on the PE and to identify the species involved. We used an already published data set, acquired from two climatic transects of Madagascar Highlands, in which the high-throughput sequencing of soil samples was applied parallel to the analysis of the potential capacity of microbial communities to generate PE following a (13)C-labeled wheat straw input. The linear and clustering approaches highlight two different aspects of the effects of microbial biodiversity on SOM decomposition. The comparison of the results enabled identification of bacterial and fungal families, and combinations of families, inducing either a linear, a non-linear, or no effect on PE after incubation. Bacterial families mainly favoured a PE proportional to their relative abundances in soil (linear effect). Inversely, fungal families induced strong non-linear effects resulting from interactions among them and with bacteria. Our findings suggest that bacteria support stoichiometric decomposition in the first days of incubation, while fungi support mainly the nutrient mining of soil’s organic matter several weeks after the beginning of incubation. Used together, the clustering and linear approaches therefore enable the estimation of the relative importance of linear effects related to microbial relative abundances, and non-linear effects related to interactions among microbial populations on soil properties. Both approaches also enable the identification of key microbial families that mainly regulate soil properties. MDPI 2023-04-23 /pmc/articles/PMC10222199/ /pubmed/37317080 http://dx.doi.org/10.3390/microorganisms11051106 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Jaillard, Benoît
Razanamalala, Kanto
Violle, Cyrille
Bernard, Laetitia
Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title_full Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title_fullStr Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title_full_unstemmed Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title_short Nonlinear Effects Induced by Interactions among Functional Groups of Bacteria and Fungi Regulate the Priming Effect in Malagasy Soils
title_sort nonlinear effects induced by interactions among functional groups of bacteria and fungi regulate the priming effect in malagasy soils
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222199/
https://www.ncbi.nlm.nih.gov/pubmed/37317080
http://dx.doi.org/10.3390/microorganisms11051106
work_keys_str_mv AT jaillardbenoit nonlineareffectsinducedbyinteractionsamongfunctionalgroupsofbacteriaandfungiregulatetheprimingeffectinmalagasysoils
AT razanamalalakanto nonlineareffectsinducedbyinteractionsamongfunctionalgroupsofbacteriaandfungiregulatetheprimingeffectinmalagasysoils
AT viollecyrille nonlineareffectsinducedbyinteractionsamongfunctionalgroupsofbacteriaandfungiregulatetheprimingeffectinmalagasysoils
AT bernardlaetitia nonlineareffectsinducedbyinteractionsamongfunctionalgroupsofbacteriaandfungiregulatetheprimingeffectinmalagasysoils