Cargando…
Multiple Physical Quantities Janus Metastructure Sensor Based on PSHE
In this paper, a Janus metastructure sensor (JMS) based on the photonic spin Hall effect (PSHE), which can detect multiple physical quantities, is proposed. The Janus property is derived from the fact that the asymmetric arrangement of different dielectrics breaks the structure parity. Hence, the me...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222221/ https://www.ncbi.nlm.nih.gov/pubmed/37430663 http://dx.doi.org/10.3390/s23104747 |
Sumario: | In this paper, a Janus metastructure sensor (JMS) based on the photonic spin Hall effect (PSHE), which can detect multiple physical quantities, is proposed. The Janus property is derived from the fact that the asymmetric arrangement of different dielectrics breaks the structure parity. Hence, the metastructure is endowed with different detection performances for physical quantities on multiple scales, broadening the range and improving the accuracy of the detection. When electromagnetic waves (EWs) are incident from the forward scale of the JMS, the refractive index, thickness, and incidence angle can be detected by locking the angle corresponding to the PSHE displacement peak that is enhanced by the graphene. The relevant detection ranges are 2~2.4, 2~2.35 μm, and 27°~47°, with sensitivities (S) of 81.35°/RIU, 64.84°/μm, and 0.02238 THz/°, respectively. Under the condition that EWs incident into the JMS from the backward direction, the JMS can also detect the same physical quantities with different sensing properties, such as S of 99.3°/RIU, 70.07°/μm, and 0.02348 THz/° in corresponding detection ranges of 2~2.09, 1.85~2.02 μm, and 20°~40°. This novel multifunctional JMS is a supplement to the traditional single-function sensor and has a certain prospect in the field of multiscenario applications. |
---|