Cargando…
The Effects Analysis of Contact Stiffness of Double-Row Tapered Roller Bearing under Composite Loads
Double-row tapered roller bearings have been widely used in various equipment recently due to their compact structure and ability to withstand large loads. The dynamic stiffness is composed of contact stiffness, oil film stiffness and support stiffness, and the contact stiffness has the most signifi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222341/ https://www.ncbi.nlm.nih.gov/pubmed/37430881 http://dx.doi.org/10.3390/s23104967 |
Sumario: | Double-row tapered roller bearings have been widely used in various equipment recently due to their compact structure and ability to withstand large loads. The dynamic stiffness is composed of contact stiffness, oil film stiffness and support stiffness, and the contact stiffness has the most significant influence on the dynamic performance of the bearing. There are few studies on the contact stiffness of double-row tapered roller bearings. Firstly, the contact mechanics calculation model of double-row tapered roller bearing under composite loads has been established. On this basis, the influence of load distribution of double-row tapered roller bearing is analyzed, and the calculation model of contact stiffness of double-row tapered roller bearing is obtained according to the relationship between overall stiffness and local stiffness of bearing. Based on the established stiffness model, the influence of different working conditions on the contact stiffness of the bearing is simulated and analyzed, and the effects of radial load, axial load, bending moment load, speed, preload, and deflection angle on the contact stiffness of double row tapered roller bearings have been revealed. Finally, by comparing the results with Adams simulation results, the error is within 8%, which verifies the validity and accuracy of the proposed model and method. The research content of this paper provides theoretical support for the design of double-row tapered roller bearings and the identification of bearing performance parameters under complex loads. |
---|