Cargando…
An End-to-End Multi-Channel Convolutional Bi-LSTM Network for Automatic Sleep Stage Detection
Sleep stage detection from polysomnography (PSG) recordings is a widely used method of monitoring sleep quality. Despite significant progress in the development of machine-learning (ML)-based and deep-learning (DL)-based automatic sleep stage detection schemes focusing on single-channel PSG data, su...
Autores principales: | Toma, Tabassum Islam, Choi, Sunwoong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222356/ https://www.ncbi.nlm.nih.gov/pubmed/37430865 http://dx.doi.org/10.3390/s23104950 |
Ejemplares similares
-
A Parallel Cross Convolutional Recurrent Neural Network for Automatic Imbalanced ECG Arrhythmia Detection with Continuous Wavelet Transform
por: Toma, Tabassum Islam, et al.
Publicado: (2022) -
CAttSleepNet: Automatic End-to-End Sleep Staging Using Attention-Based Deep Neural Networks on Single-Channel EEG
por: Li, Tingting, et al.
Publicado: (2022) -
An end-to-end framework for real-time automatic sleep stage classification
por: Patanaik, Amiya, et al.
Publicado: (2018) -
Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks
por: Zhao, Rui, et al.
Publicado: (2017) -
Multi-Branch Convolutional Neural Network for Automatic Sleep Stage Classification with Embedded Stage Refinement and Residual Attention Channel Fusion
por: Zhu, Tianqi, et al.
Publicado: (2020)