Cargando…
Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage
In order to improve the effectiveness of partial discharge detection in attached metal particle insulators, this paper proposes a partial discharge detection method for particle defects in insulators under high-frequency sinusoidal voltage excitation. In order to study the development process of par...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222416/ https://www.ncbi.nlm.nih.gov/pubmed/37242895 http://dx.doi.org/10.3390/polym15102320 |
_version_ | 1785049693090217984 |
---|---|
author | Chen, Chen Wang, Jian Wang, Jingrui Li, Zhihui Guo, Rui Jin, Hu Li, Botao |
author_facet | Chen, Chen Wang, Jian Wang, Jingrui Li, Zhihui Guo, Rui Jin, Hu Li, Botao |
author_sort | Chen, Chen |
collection | PubMed |
description | In order to improve the effectiveness of partial discharge detection in attached metal particle insulators, this paper proposes a partial discharge detection method for particle defects in insulators under high-frequency sinusoidal voltage excitation. In order to study the development process of partial discharge under high-frequency electrical stress, a two-dimensional plasma simulation model of partial discharge with particle defects at the epoxy interface is established under plate–plate electrode structure, which realizes the dynamic simulation of particulate defect partial discharge. By studying the microscopic mechanism of partial discharge, the spatial and temporal distribution characteristics of microscopic parameters such as electron density, electron temperature, and surface charge density are obtained. Based on this simulation model, this paper further studies the partial discharge characteristics of epoxy interface particle defects at different frequencies, and verifies the accuracy of the model from two aspects of discharge intensity and surface damages through experimental means. The results show that with the increase in the frequency of applied voltage, the amplitude of electron temperature shows an increasing trend. However, the surface charge density gradually decreases with the increase in frequency. These two factors make partial discharge severest when the frequency of the applied voltage is 15 kHz. |
format | Online Article Text |
id | pubmed-10222416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102224162023-05-28 Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage Chen, Chen Wang, Jian Wang, Jingrui Li, Zhihui Guo, Rui Jin, Hu Li, Botao Polymers (Basel) Article In order to improve the effectiveness of partial discharge detection in attached metal particle insulators, this paper proposes a partial discharge detection method for particle defects in insulators under high-frequency sinusoidal voltage excitation. In order to study the development process of partial discharge under high-frequency electrical stress, a two-dimensional plasma simulation model of partial discharge with particle defects at the epoxy interface is established under plate–plate electrode structure, which realizes the dynamic simulation of particulate defect partial discharge. By studying the microscopic mechanism of partial discharge, the spatial and temporal distribution characteristics of microscopic parameters such as electron density, electron temperature, and surface charge density are obtained. Based on this simulation model, this paper further studies the partial discharge characteristics of epoxy interface particle defects at different frequencies, and verifies the accuracy of the model from two aspects of discharge intensity and surface damages through experimental means. The results show that with the increase in the frequency of applied voltage, the amplitude of electron temperature shows an increasing trend. However, the surface charge density gradually decreases with the increase in frequency. These two factors make partial discharge severest when the frequency of the applied voltage is 15 kHz. MDPI 2023-05-16 /pmc/articles/PMC10222416/ /pubmed/37242895 http://dx.doi.org/10.3390/polym15102320 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Chen Wang, Jian Wang, Jingrui Li, Zhihui Guo, Rui Jin, Hu Li, Botao Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title | Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title_full | Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title_fullStr | Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title_full_unstemmed | Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title_short | Numerical Simulation Research on Partial Discharge of Particle Defects at Epoxy Interface Excited by High-Frequency Sinusoidal Voltage |
title_sort | numerical simulation research on partial discharge of particle defects at epoxy interface excited by high-frequency sinusoidal voltage |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222416/ https://www.ncbi.nlm.nih.gov/pubmed/37242895 http://dx.doi.org/10.3390/polym15102320 |
work_keys_str_mv | AT chenchen numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT wangjian numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT wangjingrui numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT lizhihui numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT guorui numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT jinhu numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage AT libotao numericalsimulationresearchonpartialdischargeofparticledefectsatepoxyinterfaceexcitedbyhighfrequencysinusoidalvoltage |