Cargando…
Research on a Precision Calibration Model of a Flexible Strain Sensor Based on a Variable Section Cantilever Beam
The flexible strain sensor’s measuring range is usually over 5000 με, while the conventional variable section cantilever calibration model has a measuring range within 1000 με. In order to satisfy the calibration requirements of flexible strain sensors, a new measurement model was proposed to solve...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222466/ https://www.ncbi.nlm.nih.gov/pubmed/37430692 http://dx.doi.org/10.3390/s23104778 |
Sumario: | The flexible strain sensor’s measuring range is usually over 5000 με, while the conventional variable section cantilever calibration model has a measuring range within 1000 με. In order to satisfy the calibration requirements of flexible strain sensors, a new measurement model was proposed to solve the inaccurate calculation problem of the theoretical strain value when the linear model of a variable section cantilever beam was applied to a large range. The nonlinear relationship between deflection and strain was established. The finite element analysis of a variable section cantilever beam with ANSYS shows that the linear model’s relative deviation is as high as 6% at 5000 με, while the relative deviation of the nonlinear model is only 0.2%. The relative expansion uncertainty of the flexible resistance strain sensor is 0.365% (k = 2). Simulation and experimental results show that this method solves the imprecision of the theoretical model effectively and realizes the accurate calibration of a large range of strain sensors. The research results enrich the measurement models and calibration models for flexible strain sensors and contribute to the development of strain metering. |
---|