Cargando…

Isothermal Experiments on Steam Oxidation of Zr−Sn−Nb Alloy at 1050 °C: Kinetics and Process

The isothermal steam oxidation behavior of the Zr−Sn−Nb alloy at 1050 °C was studied. In this study, the oxidation weight gain of Zr−Sn−Nb samples with oxidation durations ranging from 100 s to 5000 s was calculated. The oxidation kinetic properties of the Zr−Sn−Nb alloy were obtained. The macroscop...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Rui, Tang, Dewen, Yang, Chen, Wang, Yanli, Zhang, Lin, Lei, Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222480/
https://www.ncbi.nlm.nih.gov/pubmed/37241450
http://dx.doi.org/10.3390/ma16103823
Descripción
Sumario:The isothermal steam oxidation behavior of the Zr−Sn−Nb alloy at 1050 °C was studied. In this study, the oxidation weight gain of Zr−Sn−Nb samples with oxidation durations ranging from 100 s to 5000 s was calculated. The oxidation kinetic properties of the Zr−Sn−Nb alloy were obtained. The macroscopic morphology of the alloy was directly observed and compared. The microscopic surface morphology, cross-section morphology, and element content of the Zr−Sn−Nb alloy were analyzed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy disperse spectroscopy (EDS). According to the results, the cross-sectional structure of the Zr−Sn−Nb alloy consisted of ZrO(2), α-Zr(O), and prior-β. During the oxidation process, its weight gain versus oxidation time curve followed a parabolic law. The thickness of the oxide layer increases. Micropores and cracks gradually appear on the oxide film. Similarly, the thicknesses of ZrO(2) and α-Zr versus oxidation time were in accordance with the parabolic law.