Cargando…
Single-Channel Blind Image Separation Based on Transformer-Guided GAN
Blind source separation (BSS) has been a great challenge in the field of signal processing due to the unknown distribution of the source signal and the mixing matrix. Traditional methods based on statistics and information theory use prior information such as source distribution independence, non-Ga...
Autores principales: | Su, Yaya, Jia, Dongli, Shen, Yankun, Wang, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222495/ https://www.ncbi.nlm.nih.gov/pubmed/37430553 http://dx.doi.org/10.3390/s23104638 |
Ejemplares similares
-
Unsupervised Dark-Channel Attention-Guided CycleGAN for Single-Image Dehazing
por: Chen, Jiahao, et al.
Publicado: (2020) -
Swin transformer-based GAN for multi-modal medical image translation
por: Yan, Shouang, et al.
Publicado: (2022) -
Single-Channel Blind Source Separation of Spatial Aliasing Signal Based on Stacked-LSTM
por: Zhao, Mengchen, et al.
Publicado: (2021) -
Enhanced CycleGAN Network with Adaptive Dark Channel Prior for Unpaired Single-Image Dehazing
por: Xu, Yijun, et al.
Publicado: (2023) -
Image Generation from Text Using StackGAN with Improved Conditional Consistency Regularization
por: Tominaga, Rihito, et al.
Publicado: (2022)