Cargando…
C2RL: Convolutional-Contrastive Learning for Reinforcement Learning Based on Self-Pretraining for Strong Augmentation
Reinforcement learning agents that have not been seen during training must be robust in test environments. However, the generalization problem is challenging to solve in reinforcement learning using high-dimensional images as the input. The addition of a self-supervised learning framework with data...
Autores principales: | Park, Sanghoon, Kim, Jihun, Jeong, Han-You, Kim, Tae-Kyoung, Yoo, Jinwoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222541/ https://www.ncbi.nlm.nih.gov/pubmed/37430860 http://dx.doi.org/10.3390/s23104946 |
Ejemplares similares
-
Visual Pretraining via Contrastive Predictive Model for Pixel-Based Reinforcement Learning
por: Luu, Tung M., et al.
Publicado: (2022) -
GroomRL: jet grooming through reinforcement learning
por: Dreyer, Frederic Alexandre
Publicado: (2019) -
RL-DOVS: Reinforcement Learning for Autonomous Robot Navigation in Dynamic Environments
por: Mackay, Andrew K., et al.
Publicado: (2022) -
Conformer‐RL: A deep reinforcement learning library for conformer generation
por: Jiang, Runxuan, et al.
Publicado: (2022) -
RL-MLZerD: Multimeric protein docking using reinforcement learning
por: Aderinwale, Tunde, et al.
Publicado: (2022)