Cargando…
Compressed Imaging Reconstruction Based on Block Compressed Sensing with Conjugate Gradient Smoothed l(0) Norm
Compressed imaging reconstruction technology can reconstruct high-resolution images with a small number of observations by applying the theory of block compressed sensing to traditional optical imaging systems, and the reconstruction algorithm mainly determines its reconstruction accuracy. In this w...
Autores principales: | Zhang, Yongtian, Chen, Xiaomei, Zeng, Chao, Gao, Kun, Li, Shuzhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222555/ https://www.ncbi.nlm.nih.gov/pubmed/37430785 http://dx.doi.org/10.3390/s23104870 |
Ejemplares similares
-
Gradient Projection with Approximate L(0) Norm Minimization for Sparse Reconstruction in Compressed Sensing
por: Wei, Ziran, et al.
Publicado: (2018) -
A hybrid conjugate gradient algorithm for constrained monotone equations with application in compressive sensing
por: Ibrahim, Abdulkarim Hassan, et al.
Publicado: (2020) -
Extra Proximal-Gradient Network with Learned Regularization for Image Compressive Sensing Reconstruction
por: Zhang, Qingchao, et al.
Publicado: (2022) -
Blind Deconvolution Based on Compressed Sensing with bi-l(0)-l(2)-norm Regularization in Light Microscopy Image
por: Kim, Kyuseok, et al.
Publicado: (2021) -
A Fast Sparse Recovery Algorithm for Compressed Sensing Using Approximate l(0) Norm and Modified Newton Method
por: Jin, Dingfei, et al.
Publicado: (2019)