Cargando…
Three Dimensional Shape Reconstruction via Polarization Imaging and Deep Learning
Deep-learning-based polarization 3D imaging techniques, which train networks in a data-driven manner, are capable of estimating a target’s surface normal distribution under passive lighting conditions. However, existing methods have limitations in restoring target texture details and accurately esti...
Autores principales: | Wu, Xianyu, Li, Penghao, Zhang, Xin, Chen, Jiangtao, Huang, Feng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222640/ https://www.ncbi.nlm.nih.gov/pubmed/37430505 http://dx.doi.org/10.3390/s23104592 |
Ejemplares similares
-
Three-dimensional reconstructing undersampled photoacoustic microscopy images using deep learning
por: Seong, Daewoon, et al.
Publicado: (2022) -
Partial Volume Compensated Reconstruction of Three-dimensional Mass Shapes in Mammographic Images
por: Shao, Ling
Publicado: (2007) -
Three-Dimensional Subject-Specific Knee Shape Reconstruction with Asynchronous Fluoroscopy Images Using Statistical Shape Modeling
por: Lu, Hsuan-Yu, et al.
Publicado: (2021) -
Three-Dimensional Reconstruction from a Single RGB Image Using Deep Learning: A Review
por: Khan, Muhammad Saif Ullah, et al.
Publicado: (2022) -
High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging
por: Axer, Markus, et al.
Publicado: (2011)