Cargando…

Potential Application of Innovative Aspergillus terreus/Sodium Alginate Composite Beads as Eco-Friendly and Sustainable Adsorbents for Alizarin Red S Dye: Isotherms and Kinetics Models

Fungi were used as one of the most common bioremediation methods. From this perspective, our study highlights the optimization of Alizarin Red S (ARS) dye adsorption performance for the sodium alginate (SA) by using the fungus Aspergillus terreus (A. terreus) to form a composite bead and the possibi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tagyan, Aya I., Yasser, Manal M., Mousa, Ahmed M., Alkhalifah, Dalal Hussien M., Hozzein, Wael N., Marzouk, Marym A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222648/
https://www.ncbi.nlm.nih.gov/pubmed/37317108
http://dx.doi.org/10.3390/microorganisms11051135
Descripción
Sumario:Fungi were used as one of the most common bioremediation methods. From this perspective, our study highlights the optimization of Alizarin Red S (ARS) dye adsorption performance for the sodium alginate (SA) by using the fungus Aspergillus terreus (A. terreus) to form a composite bead and the possibility of its reusability. This was accomplished by mixing SA with different ratios of biomass powder of A. terreus, including 0%, 10%, 20%, 30%, and 40%, to form composite beads of A. terreus/SA-0%, A. terreus/SA-10%, A. terreus/SA-20%, A. terreus/SA-30%, and A. terreus/SA-40%, respectively. The ARS adsorption characteristics of these composite mixtures were analyzed at various mass ratios, temperatures, pH values, and initial concentrations. Moreover, sophisticated techniques, such as scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), were employed to detect the morphological and chemical properties of this composite, respectively. The experimental results revealed that A. terreus/SA-20% composite beads have the highest adsorption capacity of 188 mg/g. Its optimum adsorption conditions were achieved at 45 °C and pH 3. Moreover, the ARS adsorption was well explained by the Langmuir isotherm (q(m) = 192.30 mg/g) and pseudo-second-order and intra-particle diffusion kinetics. The SEM and FTIR findings corroborated the superior uptake of A. terreus/SA-20% composite beads. Lastly, the A. terreus/SA-20% composite beads can be employed as an eco-friendly and sustainable alternative to other common adsorbents for ARS.