Cargando…
TransNet: Transformer-Based Point Cloud Sampling Network
As interest in point cloud processing has gradually increased in the industry, point cloud sampling techniques have been researched to improve deep learning networks. As many conventional models use point clouds directly, the consideration of computational complexity has become critical for practica...
Autores principales: | Lee, Hookyung, Jeon, Jaeseung, Hong, Seokjin, Kim, Jeesu, Yoo, Jinwoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222656/ https://www.ncbi.nlm.nih.gov/pubmed/37430589 http://dx.doi.org/10.3390/s23104675 |
Ejemplares similares
-
Cov-TransNet: Dual branch fusion network with transformer for COVID-19 infection segmentation
por: Peng, Yanjun, et al.
Publicado: (2023) -
A Variable-Sampling Time Model Predictive Control Algorithm for Improving Path-Tracking Performance of a Vehicle
por: Choi, Yoonsuk, et al.
Publicado: (2021) -
DFT-Net: Deep Feature Transformation Based Network for Object Categorization and Part Segmentation in 3-Dimensional Point Clouds
por: Sheikh, Mehak, et al.
Publicado: (2022) -
UFO-Net: A Linear Attention-Based Network for Point Cloud Classification
por: He, Sheng, et al.
Publicado: (2023) -
NrtNet: An Unsupervised Method for 3D Non-Rigid Point Cloud Registration Based on Transformer
por: Hu, Xiaobo, et al.
Publicado: (2022)