Cargando…

Maximizing the Recycling of Iron Ore Pellets Fines Using Innovative Organic Binders

This research work focuses on the practicality of using organic binders for the briquetting of pellet fines. The developed briquettes were evaluated in terms of mechanical strength and reduction behavior with hydrogen. A hydraulic compression testing machine and thermogravimetric analysis were incor...

Descripción completa

Detalles Bibliográficos
Autores principales: Manu, Karthik, Mousa, Elsayed, Ahmed, Hesham, Elsadek, Mohamed, Yang, Weihong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222711/
https://www.ncbi.nlm.nih.gov/pubmed/37241517
http://dx.doi.org/10.3390/ma16103888
Descripción
Sumario:This research work focuses on the practicality of using organic binders for the briquetting of pellet fines. The developed briquettes were evaluated in terms of mechanical strength and reduction behavior with hydrogen. A hydraulic compression testing machine and thermogravimetric analysis were incorporated into this work to investigate the mechanical strength and reduction behavior of the produced briquettes. Six organic binders, namely Kempel, lignin, starch, lignosulfonate, Alcotac CB6, and Alcotac FE14, in addition to sodium silicate, were tested for the briquetting of pellet fines. The highest mechanical strength was achieved using sodium silicate, Kempel, CB6, and lignosulfonate. The best combination of binder to attain the required mechanical strength even after 100% reduction was found to be a combination of 1.5 wt.% of organic binder (either CB6 or Kempel) with 0.5 wt.% of inorganic binder (sodium silicate). Upscaling using an extruder gave propitious results in the reduction behavior, as the produced briquettes were highly porous and attained pre-requisite mechanical strength.