Cargando…
Adaptive Context Caching for IoT-Based Applications: A Reinforcement Learning Approach
Making internet-of-things (IoT)-based applications context-aware demands large amounts of raw data to be collected, interpreted, stored, and reused or repurposed if needed from many domains and applications. Context is transient but interpreted data can be distinguished from IoT data in many aspects...
Autores principales: | Weerasinghe, Shakthi, Zaslavsky, Arkady, Loke, Seng Wai, Hassani, Alireza, Medvedev, Alexey, Abken, Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222717/ https://www.ncbi.nlm.nih.gov/pubmed/37430681 http://dx.doi.org/10.3390/s23104767 |
Ejemplares similares
-
Requirements, Limitations and Recommendations for Enabling End-to-End Quality of Context-Awareness in IoT Middleware
por: Jagarlamudi, Kanaka Sai, et al.
Publicado: (2022) -
Refresh Rate-Based Caching and Prefetching Strategies for Internet of Things Middleware
por: Medvedev, Alexey, et al.
Publicado: (2023) -
Efficient Execution of Complex Context Queries to Enable Near Real-Time Smart IoT Applications
por: Hassani, Alireza, et al.
Publicado: (2019) -
Smart Collaborative Caching for Information-Centric IoT in Fog Computing
por: Song, Fei, et al.
Publicado: (2017) -
Delay-aware distributed program caching for IoT-edge networks
por: Kim, Chang Kyung, et al.
Publicado: (2022)