Cargando…

A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox

Gearboxes are utilized in practically all complicated machinery equipment because they have great transmission accuracy and load capacities, so their failure frequently results in significant financial losses. The classification of high-dimensional data remains a difficult topic despite the fact tha...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Di, Zhang, Xiangfeng, Zhang, Zhiyu, Jiang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222720/
https://www.ncbi.nlm.nih.gov/pubmed/37430707
http://dx.doi.org/10.3390/s23104792
_version_ 1785049766960300032
author Liu, Di
Zhang, Xiangfeng
Zhang, Zhiyu
Jiang, Hong
author_facet Liu, Di
Zhang, Xiangfeng
Zhang, Zhiyu
Jiang, Hong
author_sort Liu, Di
collection PubMed
description Gearboxes are utilized in practically all complicated machinery equipment because they have great transmission accuracy and load capacities, so their failure frequently results in significant financial losses. The classification of high-dimensional data remains a difficult topic despite the fact that numerous data-driven intelligent diagnosis approaches have been suggested and employed for compound fault diagnosis in recent years with successful outcomes. In order to achieve the best diagnostic performance as the ultimate objective, a feature selection and fault decoupling framework is proposed in this paper. That is based on multi-label K-nearest neighbors (ML-kNN) as classifiers and can automatically determine the optimal subset from the original high-dimensional feature set. The proposed feature selection method is a hybrid framework that can be divided into three stages. The Fisher score, information gain, and Pearson’s correlation coefficient are three filter models that are used in the first stage to pre-rank candidate features. In the second stage, a weighting scheme based on the weighted average method is proposed to fuse the pre-ranking results obtained in the first stage and optimize the weights using a genetic algorithm to re-rank the features. The optimal subset is automatically and iteratively found in the third stage using three heuristic strategies, including binary search, sequential forward search, and sequential backward search. The method takes into account the consideration of feature irrelevance, redundancy and inter-feature interaction in the selection process, and the selected optimal subsets have better diagnostic performance. In two gearbox compound fault datasets, ML-kNN performs exceptionally well using the optimal subset with subset accuracy of 96.22% and 100%. The experimental findings demonstrate the effectiveness of the proposed method in predicting various labels for compound fault samples to identify and decouple compound faults. The proposed method performs better in terms of classification accuracy and optimal subset dimensionality when compared to other existing methods.
format Online
Article
Text
id pubmed-10222720
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102227202023-05-28 A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox Liu, Di Zhang, Xiangfeng Zhang, Zhiyu Jiang, Hong Sensors (Basel) Article Gearboxes are utilized in practically all complicated machinery equipment because they have great transmission accuracy and load capacities, so their failure frequently results in significant financial losses. The classification of high-dimensional data remains a difficult topic despite the fact that numerous data-driven intelligent diagnosis approaches have been suggested and employed for compound fault diagnosis in recent years with successful outcomes. In order to achieve the best diagnostic performance as the ultimate objective, a feature selection and fault decoupling framework is proposed in this paper. That is based on multi-label K-nearest neighbors (ML-kNN) as classifiers and can automatically determine the optimal subset from the original high-dimensional feature set. The proposed feature selection method is a hybrid framework that can be divided into three stages. The Fisher score, information gain, and Pearson’s correlation coefficient are three filter models that are used in the first stage to pre-rank candidate features. In the second stage, a weighting scheme based on the weighted average method is proposed to fuse the pre-ranking results obtained in the first stage and optimize the weights using a genetic algorithm to re-rank the features. The optimal subset is automatically and iteratively found in the third stage using three heuristic strategies, including binary search, sequential forward search, and sequential backward search. The method takes into account the consideration of feature irrelevance, redundancy and inter-feature interaction in the selection process, and the selected optimal subsets have better diagnostic performance. In two gearbox compound fault datasets, ML-kNN performs exceptionally well using the optimal subset with subset accuracy of 96.22% and 100%. The experimental findings demonstrate the effectiveness of the proposed method in predicting various labels for compound fault samples to identify and decouple compound faults. The proposed method performs better in terms of classification accuracy and optimal subset dimensionality when compared to other existing methods. MDPI 2023-05-16 /pmc/articles/PMC10222720/ /pubmed/37430707 http://dx.doi.org/10.3390/s23104792 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Liu, Di
Zhang, Xiangfeng
Zhang, Zhiyu
Jiang, Hong
A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title_full A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title_fullStr A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title_full_unstemmed A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title_short A Hybrid Feature Selection and Multi-Label Driven Intelligent Fault Diagnosis Method for Gearbox
title_sort hybrid feature selection and multi-label driven intelligent fault diagnosis method for gearbox
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222720/
https://www.ncbi.nlm.nih.gov/pubmed/37430707
http://dx.doi.org/10.3390/s23104792
work_keys_str_mv AT liudi ahybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT zhangxiangfeng ahybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT zhangzhiyu ahybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT jianghong ahybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT liudi hybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT zhangxiangfeng hybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT zhangzhiyu hybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox
AT jianghong hybridfeatureselectionandmultilabeldrivenintelligentfaultdiagnosismethodforgearbox