Cargando…
High-Speed Temperature Control Method for MEMS Thermal Gravimetric Analyzer Based on Dual Fuzzy PID Control
The traditional thermal gravimetric analyzer (TGA) has a noticeable thermal lag effect, which restricts the heating rate, while the micro-electro-mechanical system thermal gravimetric analyzer (MEMS TGA) utilizes a resonant cantilever beam structure with high mass sensitivity, on-chip heating, and a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222855/ https://www.ncbi.nlm.nih.gov/pubmed/37241554 http://dx.doi.org/10.3390/mi14050929 |
Sumario: | The traditional thermal gravimetric analyzer (TGA) has a noticeable thermal lag effect, which restricts the heating rate, while the micro-electro-mechanical system thermal gravimetric analyzer (MEMS TGA) utilizes a resonant cantilever beam structure with high mass sensitivity, on-chip heating, and a small heating area, resulting in no thermal lag effect and a fast heating rate. To achieve high-speed temperature control for MEMS TGA, this study proposes a dual fuzzy proportional-integral-derivative (PID) control method. The fuzzy control adjusts the PID parameters in real-time to minimize overshoot while effectively addressing system nonlinearities. Simulation and actual testing results indicate that this temperature control method has a faster response speed and less overshoot compared to traditional PID control, significantly improving the heating performance of MEMS TGA. |
---|