Cargando…
Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries
High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222956/ https://www.ncbi.nlm.nih.gov/pubmed/37241847 http://dx.doi.org/10.3390/molecules28104106 |
_version_ | 1785049824359350272 |
---|---|
author | Fu, Sha Xie, Xuanzhi Huangyang, Xiaoyi Yang, Longxi Zeng, Xianxiang Ma, Qiang Wu, Xiongwei Xiao, Mingtao Wu, Yuping |
author_facet | Fu, Sha Xie, Xuanzhi Huangyang, Xiaoyi Yang, Longxi Zeng, Xianxiang Ma, Qiang Wu, Xiongwei Xiao, Mingtao Wu, Yuping |
author_sort | Fu, Sha |
collection | PubMed |
description | High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode–electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm(−2), 0.2 mAh cm(−2). Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi(0.8)Co(0.1)Mn(0.1)O(2) and Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems. |
format | Online Article Text |
id | pubmed-10222956 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102229562023-05-28 Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries Fu, Sha Xie, Xuanzhi Huangyang, Xiaoyi Yang, Longxi Zeng, Xianxiang Ma, Qiang Wu, Xiongwei Xiao, Mingtao Wu, Yuping Molecules Communication High-energy-density lithium metal batteries with high safety and stability are urgently needed. Designing the novel nonflammable electrolytes possessing superior interface compatibility and stability is critical to achieve the stable cycling of battery. Herein, the functional additive dimethyl allyl-phosphate and fluoroethylene carbonate were introduced to triethyl phosphate electrolytes to stabilize the deposition of metallic lithium and accommodate the electrode–electrolyte interface. In comparison with traditional carbonate electrolyte, the designed electrolyte shows high thermostability and inflaming retarding characteristics. Meanwhile, the Li||Li symmetrical batteries with designed phosphonic-based electrolytes exhibit a superior cycling stability of 700 h at the condition of 0.2 mA cm(−2), 0.2 mAh cm(−2). Additionally, the smooth- and dense-deposited morphology was observed on an cycled Li anode surface, demonstrating that the designed electrolytes show better interface compatibility with metallic lithium anodes. The Li||LiNi(0.8)Co(0.1)Mn(0.1)O(2) and Li||LiNi(0.6)Co(0.2)Mn(0.2)O(2) batteries paired with phosphonic-based electrolytes show better cycling stability after 200 and 450 cycles at the rate of 0.2 C, respectively. Our work provides a new way to ameliorate nonflammable electrolytes in advanced energy storage systems. MDPI 2023-05-15 /pmc/articles/PMC10222956/ /pubmed/37241847 http://dx.doi.org/10.3390/molecules28104106 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Fu, Sha Xie, Xuanzhi Huangyang, Xiaoyi Yang, Longxi Zeng, Xianxiang Ma, Qiang Wu, Xiongwei Xiao, Mingtao Wu, Yuping Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title | Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title_full | Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title_fullStr | Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title_full_unstemmed | Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title_short | Ameliorating Phosphonic-Based Nonflammable Electrolytes Towards Safe and Stable Lithium Metal Batteries |
title_sort | ameliorating phosphonic-based nonflammable electrolytes towards safe and stable lithium metal batteries |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222956/ https://www.ncbi.nlm.nih.gov/pubmed/37241847 http://dx.doi.org/10.3390/molecules28104106 |
work_keys_str_mv | AT fusha amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT xiexuanzhi amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT huangyangxiaoyi amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT yanglongxi amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT zengxianxiang amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT maqiang amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT wuxiongwei amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT xiaomingtao amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries AT wuyuping amelioratingphosphonicbasednonflammableelectrolytestowardssafeandstablelithiummetalbatteries |