Cargando…

Wood Veneer Defect Detection Based on Multiscale DETR with Position Encoder Net

Wood is one of the main building materials. However, defects on veneers result in substantial waste of wood resources. Traditional veneer defect detection relies on manual experience or photoelectric-based methods, which are either subjective and inefficient or need substantial investment. Computer...

Descripción completa

Detalles Bibliográficos
Autores principales: Ge, Yilin, Jiang, Dapeng, Sun, Liping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10222963/
https://www.ncbi.nlm.nih.gov/pubmed/37430752
http://dx.doi.org/10.3390/s23104837
Descripción
Sumario:Wood is one of the main building materials. However, defects on veneers result in substantial waste of wood resources. Traditional veneer defect detection relies on manual experience or photoelectric-based methods, which are either subjective and inefficient or need substantial investment. Computer vision-based object detection methods have been used in many realistic areas. This paper proposes a new deep learning defect detection pipeline. First, an image collection device is constructed and a total of more than 16,380 defect images are collected coupled with a mixed data augmentation method. Then, a detection pipeline is designed based on DEtection TRansformer (DETR). The original DETR needs position encoding functions to be designed and is ineffective for small object detection. To solve these problems, a position encoding net is designed with multiscale feature maps. The loss function is also redefined for much more stable training. The results from the defect dataset show that using a light feature mapping network, the proposed method is much faster with similar accuracy. Using a complex feature mapping network, the proposed method is much more accurate with similar speed.