Cargando…
CNN–LSTM Neural Network for Identification of Pre-Cooked Pasta Products in Different Physical States Using Infrared Spectroscopy
Infrared (IR) spectroscopy is nondestructive, fast, and straightforward. Recently, a growing number of pasta companies have been using IR spectroscopy combined with chemometrics to quickly determine sample parameters. However, fewer models have used deep learning models to classify cooked wheat food...
Autores principales: | Sun, Penghui, Wang, Jiajia, Dong, Zhilin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223046/ https://www.ncbi.nlm.nih.gov/pubmed/37430729 http://dx.doi.org/10.3390/s23104815 |
Ejemplares similares
-
A dataset of visible – Short wave InfraRed reflectance spectra collected on pre-cooked pasta products
por: Bonifazi, Giuseppe, et al.
Publicado: (2021) -
A hybrid CNN-LSTM model for pre-miRNA classification
por: Tasdelen, Abdulkadir, et al.
Publicado: (2021) -
NLOS Identification in WLANs Using Deep LSTM with CNN Features
por: Nguyen, Viet-Hung, et al.
Publicado: (2018) -
Detection of Corona Faults in Switchgear by Using 1D-CNN, LSTM, and 1D-CNN-LSTM Methods
por: Mohammed Alsumaidaee, Yaseen Ahmed, et al.
Publicado: (2023) -
Flaxseed Enriched Pasta—Chemical Composition and Cooking Quality
por: Zarzycki, Piotr, et al.
Publicado: (2020)