Cargando…
Poly(styrene sulfonic acid)-Grafted Carbon Black Synthesized by Surface-Initiated Atom Transfer Radical Polymerization
Owing to their excellent electrical conductivity and robust mechanical properties, carbon-based nanocomposites are being used in a wide range of applications and devices, such as electromagnetic wave interference shielding, electronic devices, and fuel cells. While several approaches have been devel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223097/ https://www.ncbi.nlm.nih.gov/pubmed/37241908 http://dx.doi.org/10.3390/molecules28104168 |
Sumario: | Owing to their excellent electrical conductivity and robust mechanical properties, carbon-based nanocomposites are being used in a wide range of applications and devices, such as electromagnetic wave interference shielding, electronic devices, and fuel cells. While several approaches have been developed for synthesizing carbon nanotubes and carbon-black-based polymer nanocomposites, most studies have focused on the simple blending of the carbon material with a polymer matrix. However, this results in uncontrolled interactions between the carbon filler and the polymer chains, leading to the agglomeration of the carbon filler. Herein, we report a new strategy for synthesizing sulfonated polystyrene (PSS)-grafted carbon black nanoparticles (NPs) via surface-initiated atom-transfer radical polymerization. Treatments with O(2) plasma and H(2)O(2) result in the effective attachment of the appropriate initiator to the carbon black NPs, thus allowing for the controlled formation of the PSS brushes. The high polymeric processability and desirable mechanical properties of the PSS-grafted carbon black NPs enable them suitable for use in nonfluorinated-hydrocarbon-based polymer electrolyte membranes for fuel cells, which must exhibit high proton conductivity without interrupting the network of channels consisting of ionic clusters (i.e., sulfonic acid moieties). |
---|