Cargando…
Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models
Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223103/ https://www.ncbi.nlm.nih.gov/pubmed/37242040 http://dx.doi.org/10.3390/nano13101624 |
_version_ | 1785049860840357888 |
---|---|
author | Foti, Alice Calì, Luana Petralia, Salvatore Satriano, Cristina |
author_facet | Foti, Alice Calì, Luana Petralia, Salvatore Satriano, Cristina |
author_sort | Foti, Alice |
collection | PubMed |
description | Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively. Biophysical studies with model cell membranes were carried out by using laser scanning confocal microscopy (LSM) with fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) techniques. To this purpose, artificial cell membranes of supported lipid bilayers (SLBs) made with 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) dye-labeled with 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD, FRET donor) and/or lissamine rhodamine B sulfonyl (Rh, FRET acceptor) were prepared. Proof-of-work in vitro cellular experiments were carried out with prostate cancer cells (PC-3 line) in terms of cytotoxicity, cell migration (wound scratch assay), NP cellular uptake, and cytoskeleton actin perturbation. |
format | Online Article Text |
id | pubmed-10223103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102231032023-05-28 Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models Foti, Alice Calì, Luana Petralia, Salvatore Satriano, Cristina Nanomaterials (Basel) Article Noble metal nanoparticles (NP) with intrinsic antiangiogenic, antibacterial, and anti-inflammatory properties have great potential as potent chemotherapeutics, due to their unique features, including plasmonic properties for application in photothermal therapy, and their capability to slow down the migration/invasion speed of cancer cells and then suppress metastasis. In this work, gold (Au), silver (Ag), and palladium (Pd) NP were synthesized by a green redox chemistry method with the reduction of the metal salt precursor with glucose in the presence of polyvinylpyrrolidone (PVP) as stabilizing and capping agent. The physicochemical properties of the PVP-capped NP were investigated by UV-visible (UV-vis) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopies, dynamic light scattering (DLS), and atomic force microscopy (AFM), to scrutinize the optical features and the interface between the metal surface and the capping polymer, the hydrodynamic size, and the morphology, respectively. Biophysical studies with model cell membranes were carried out by using laser scanning confocal microscopy (LSM) with fluorescence recovery after photobleaching (FRAP) and fluorescence resonance energy transfer (FRET) techniques. To this purpose, artificial cell membranes of supported lipid bilayers (SLBs) made with 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC) dye-labeled with 7-nitro-2-1,3-benzoxadiazol-4-yl (NBD, FRET donor) and/or lissamine rhodamine B sulfonyl (Rh, FRET acceptor) were prepared. Proof-of-work in vitro cellular experiments were carried out with prostate cancer cells (PC-3 line) in terms of cytotoxicity, cell migration (wound scratch assay), NP cellular uptake, and cytoskeleton actin perturbation. MDPI 2023-05-12 /pmc/articles/PMC10223103/ /pubmed/37242040 http://dx.doi.org/10.3390/nano13101624 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Foti, Alice Calì, Luana Petralia, Salvatore Satriano, Cristina Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title | Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title_full | Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title_fullStr | Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title_full_unstemmed | Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title_short | Green Nanoformulations of Polyvinylpyrrolidone-Capped Metal Nanoparticles: A Study at the Hybrid Interface with Biomimetic Cell Membranes and In Vitro Cell Models |
title_sort | green nanoformulations of polyvinylpyrrolidone-capped metal nanoparticles: a study at the hybrid interface with biomimetic cell membranes and in vitro cell models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223103/ https://www.ncbi.nlm.nih.gov/pubmed/37242040 http://dx.doi.org/10.3390/nano13101624 |
work_keys_str_mv | AT fotialice greennanoformulationsofpolyvinylpyrrolidonecappedmetalnanoparticlesastudyatthehybridinterfacewithbiomimeticcellmembranesandinvitrocellmodels AT caliluana greennanoformulationsofpolyvinylpyrrolidonecappedmetalnanoparticlesastudyatthehybridinterfacewithbiomimeticcellmembranesandinvitrocellmodels AT petraliasalvatore greennanoformulationsofpolyvinylpyrrolidonecappedmetalnanoparticlesastudyatthehybridinterfacewithbiomimeticcellmembranesandinvitrocellmodels AT satrianocristina greennanoformulationsofpolyvinylpyrrolidonecappedmetalnanoparticlesastudyatthehybridinterfacewithbiomimeticcellmembranesandinvitrocellmodels |