Cargando…
Design of GPU Network-on-Chip for Real-Time Video Super-Resolution Reconstruction
Deep learning has a better output quality compared with traditional algorithms for video super-resolution (SR), but the network model needs large resources and has poor real-time performance. This paper focuses on solving the speed problem of SR; it achieves real-time SR by the collaborative design...
Autores principales: | Peng, Zhiyong, Du, Jiang, Qiao, Yulong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223162/ https://www.ncbi.nlm.nih.gov/pubmed/37241678 http://dx.doi.org/10.3390/mi14051055 |
Ejemplares similares
-
Enabling Real-Time On-Chip Audio Super Resolution for Bone-Conduction Microphones
por: Li, Yuang, et al.
Publicado: (2022) -
Real-Time Video Super-Resolution with Spatio-Temporal Modeling and Redundancy-Aware Inference
por: Wang, Wenhao, et al.
Publicado: (2023) -
A multiresolution mixture generative adversarial network for video super-resolution
por: Tian, Zhiqiang, et al.
Publicado: (2020) -
Super resolution of images and video
por: Katsaggelos, Aggelos K, et al.
Publicado: (2007) -
Real time flow with fast GPU reconstruction for continuous assessment of cardiac output
por: Kowalik, Grzegorz T, et al.
Publicado: (2012)