Cargando…
Analysis of Acousto-Optic Phenomenon in SAW Acoustofluidic Chip and Its Application in Light Refocusing
This paper describes and analyzes a common acousto-optic phenomenon in surface acoustic wave (SAW) microfluidic chips and accomplishes some imaging experiments based on these analyses. This phenomenon in acoustofluidic chips includes the appearance of bright and dark stripes and image distortion. Th...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223201/ https://www.ncbi.nlm.nih.gov/pubmed/37241567 http://dx.doi.org/10.3390/mi14050943 |
Sumario: | This paper describes and analyzes a common acousto-optic phenomenon in surface acoustic wave (SAW) microfluidic chips and accomplishes some imaging experiments based on these analyses. This phenomenon in acoustofluidic chips includes the appearance of bright and dark stripes and image distortion. This article analyzes the three-dimensional acoustic pressure field and refractive index field distribution induced by focused acoustic fields and completes an analysis of the light path in an uneven refractive index medium. Based on the analysis of microfluidic devices, a SAW device based on a solid medium is further proposed. This MEMS SAW device can refocus the light beam and adjust the sharpness of the micrograph. The focal length can be controlled by changing the voltage. Moreover, the chip is also proven to be capable of forming a refractive index field in scattering media, such as tissue phantom and pig subcutaneous fat layer. This chip has the potential to be used as a planar microscale optical component that is easy to integrate and further optimize and provides a new concept about tunable imaging devices that can be attached directly to the skin or tissue. |
---|