Cargando…
A Secure Secret Key Agreement Scheme among Multiple Twinning Superlattice PUF Holders
Modern cryptography attributes the security of a cryptographic system to the security of the key. How to securely distribute the key has always been a bottleneck in key management. This paper proposes a secure group key agreement scheme for multiple parties using a multiple twinning superlattice phy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223279/ https://www.ncbi.nlm.nih.gov/pubmed/37430626 http://dx.doi.org/10.3390/s23104704 |
Sumario: | Modern cryptography attributes the security of a cryptographic system to the security of the key. How to securely distribute the key has always been a bottleneck in key management. This paper proposes a secure group key agreement scheme for multiple parties using a multiple twinning superlattice physical unclonable function (PUF) that can be synchronized. By sharing the challenge and helper data among multiple twinning superlattice PUF holders, the scheme employs a reusable fuzzy extractor to obtain the key locally. Moreover, adopting public-key encryption encrypts public data for establishing the subgroup key, which provides independent communication for the subgroup. At the same time, when the subgroup membership changes, the public key encrypts new public data to update the subgroup key, forming scalable group communication. This paper also presents a cost and formal security analysis, which shows that the proposed scheme can achieve computational security by applying the key obtained by the computationally secure reusable fuzzy extractor to the EAV-secure symmetric-key encryption, which has indistinguishable encryption in the presence of an eavesdropper. Additionally, the scheme is secure against physical attacks, man-in-the-middle attacks, and machine learning modeling attacks. |
---|