Cargando…
Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation
Shock tubes can carry out dynamic mechanical impact tests on civil engineering structures. The current shock tubes mostly use an explosion with aggregate charge to obtain shock waves. Limited effort has been made to study the overpressure field in shock tubes with multi-point initiation. In this pap...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223363/ https://www.ncbi.nlm.nih.gov/pubmed/37430656 http://dx.doi.org/10.3390/s23104743 |
_version_ | 1785049923869212672 |
---|---|
author | Chen, Zhuo Ren, Huiqi Zhao, Qiang Zhou, Songbai Long, Zhilin Liu, Wei |
author_facet | Chen, Zhuo Ren, Huiqi Zhao, Qiang Zhou, Songbai Long, Zhilin Liu, Wei |
author_sort | Chen, Zhuo |
collection | PubMed |
description | Shock tubes can carry out dynamic mechanical impact tests on civil engineering structures. The current shock tubes mostly use an explosion with aggregate charge to obtain shock waves. Limited effort has been made to study the overpressure field in shock tubes with multi-point initiation. In this paper, the overpressure fields in a shock tube under the conditions of single-point initiation, multi-point simultaneous initiation, and multi-point delayed initiation have been analyzed by combining experiments and numerical simulations. The numerical results match well with the experimental data, which indicates that the computational model and method used can accurately simulate the blast flow field in a shock tube. For the same charge mass, the peak overpressure at the exit of the shock tube with the multi-point simultaneous initiation is smaller than that with single-point initiation. As the shock waves are focused on the wall, the maximum overpressure on the wall of the explosion chamber near the explosion zone is not reduced. The maximum overpressure on the wall of the explosion chamber can be effectively reduced by a six-point delayed initiation. When the interval time is less than 10 ms, the peak overpressure at the nozzle outlet decreases linearly with the interval of the explosion. When the interval time is greater than 10 ms, the overpressure peak remains unchanged. |
format | Online Article Text |
id | pubmed-10223363 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102233632023-05-28 Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation Chen, Zhuo Ren, Huiqi Zhao, Qiang Zhou, Songbai Long, Zhilin Liu, Wei Sensors (Basel) Article Shock tubes can carry out dynamic mechanical impact tests on civil engineering structures. The current shock tubes mostly use an explosion with aggregate charge to obtain shock waves. Limited effort has been made to study the overpressure field in shock tubes with multi-point initiation. In this paper, the overpressure fields in a shock tube under the conditions of single-point initiation, multi-point simultaneous initiation, and multi-point delayed initiation have been analyzed by combining experiments and numerical simulations. The numerical results match well with the experimental data, which indicates that the computational model and method used can accurately simulate the blast flow field in a shock tube. For the same charge mass, the peak overpressure at the exit of the shock tube with the multi-point simultaneous initiation is smaller than that with single-point initiation. As the shock waves are focused on the wall, the maximum overpressure on the wall of the explosion chamber near the explosion zone is not reduced. The maximum overpressure on the wall of the explosion chamber can be effectively reduced by a six-point delayed initiation. When the interval time is less than 10 ms, the peak overpressure at the nozzle outlet decreases linearly with the interval of the explosion. When the interval time is greater than 10 ms, the overpressure peak remains unchanged. MDPI 2023-05-14 /pmc/articles/PMC10223363/ /pubmed/37430656 http://dx.doi.org/10.3390/s23104743 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Chen, Zhuo Ren, Huiqi Zhao, Qiang Zhou, Songbai Long, Zhilin Liu, Wei Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title | Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title_full | Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title_fullStr | Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title_full_unstemmed | Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title_short | Analysis of the Overpressure Fields in a Shock Tube with Multi-Point Initiation |
title_sort | analysis of the overpressure fields in a shock tube with multi-point initiation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223363/ https://www.ncbi.nlm.nih.gov/pubmed/37430656 http://dx.doi.org/10.3390/s23104743 |
work_keys_str_mv | AT chenzhuo analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation AT renhuiqi analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation AT zhaoqiang analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation AT zhousongbai analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation AT longzhilin analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation AT liuwei analysisoftheoverpressurefieldsinashocktubewithmultipointinitiation |