Cargando…

Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building

Thermal comfort is crucial to well-being and work productivity. Human thermal comfort is mainly controlled by HVAC (heating, ventilation, air conditioning) systems in buildings. However, the control metrics and measurements of thermal comfort in HVAC systems are often oversimplified using limited pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Peng, Bo, Hsieh, Sheng-Jen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223385/
https://www.ncbi.nlm.nih.gov/pubmed/37430770
http://dx.doi.org/10.3390/s23104857
_version_ 1785049929084829696
author Peng, Bo
Hsieh, Sheng-Jen
author_facet Peng, Bo
Hsieh, Sheng-Jen
author_sort Peng, Bo
collection PubMed
description Thermal comfort is crucial to well-being and work productivity. Human thermal comfort is mainly controlled by HVAC (heating, ventilation, air conditioning) systems in buildings. However, the control metrics and measurements of thermal comfort in HVAC systems are often oversimplified using limited parameters and fail to accurately control thermal comfort in indoor climates. Traditional comfort models also lack the ability to adapt to individual demands and sensations. This research developed a data-driven thermal comfort model to improve the overall thermal comfort of occupants in office buildings. An architecture based on cyber-physical system (CPS) is used to achieve these goals. A building simulation model is built to simulate multiple occupants’ behaviors in an open-space office building. Results suggest that a hybrid model can accurately predict occupants’ thermal comfort level with reasonable computing time. In addition, this model can improve occupants’ thermal comfort by 43.41% to 69.93%, while energy consumption remains the same or is slightly reduced (1.01% to 3.63%). This strategy can potentially be implemented in real-world building automation systems with appropriate sensor placement in modern buildings.
format Online
Article
Text
id pubmed-10223385
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102233852023-05-28 Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building Peng, Bo Hsieh, Sheng-Jen Sensors (Basel) Article Thermal comfort is crucial to well-being and work productivity. Human thermal comfort is mainly controlled by HVAC (heating, ventilation, air conditioning) systems in buildings. However, the control metrics and measurements of thermal comfort in HVAC systems are often oversimplified using limited parameters and fail to accurately control thermal comfort in indoor climates. Traditional comfort models also lack the ability to adapt to individual demands and sensations. This research developed a data-driven thermal comfort model to improve the overall thermal comfort of occupants in office buildings. An architecture based on cyber-physical system (CPS) is used to achieve these goals. A building simulation model is built to simulate multiple occupants’ behaviors in an open-space office building. Results suggest that a hybrid model can accurately predict occupants’ thermal comfort level with reasonable computing time. In addition, this model can improve occupants’ thermal comfort by 43.41% to 69.93%, while energy consumption remains the same or is slightly reduced (1.01% to 3.63%). This strategy can potentially be implemented in real-world building automation systems with appropriate sensor placement in modern buildings. MDPI 2023-05-18 /pmc/articles/PMC10223385/ /pubmed/37430770 http://dx.doi.org/10.3390/s23104857 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Peng, Bo
Hsieh, Sheng-Jen
Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title_full Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title_fullStr Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title_full_unstemmed Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title_short Cyber-Enabled Optimization of HVAC System Control in Open Space of Office Building
title_sort cyber-enabled optimization of hvac system control in open space of office building
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223385/
https://www.ncbi.nlm.nih.gov/pubmed/37430770
http://dx.doi.org/10.3390/s23104857
work_keys_str_mv AT pengbo cyberenabledoptimizationofhvacsystemcontrolinopenspaceofofficebuilding
AT hsiehshengjen cyberenabledoptimizationofhvacsystemcontrolinopenspaceofofficebuilding