Cargando…
Joint Learning of Correlation-Constrained Fuzzy Clustering and Discriminative Non-Negative Representation for Hyperspectral Band Selection
Hyperspectral band selection plays an important role in overcoming the curse of dimensionality. Recently, clustering-based band selection methods have shown promise in the selection of informative and representative bands from hyperspectral images (HSIs). However, most existing clustering-based band...
Autores principales: | Li, Zelin, Wang, Wenhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223391/ https://www.ncbi.nlm.nih.gov/pubmed/37430753 http://dx.doi.org/10.3390/s23104838 |
Ejemplares similares
-
Spatial–Spectral Constrained Adaptive Graph for Hyperspectral Image Clustering
por: Zhu, Xing-Hui, et al.
Publicado: (2022) -
Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers
por: Ahmad, Muhammad, et al.
Publicado: (2018) -
Semi-Supervised Fuzzy Clustering with Feature Discrimination
por: Li, Longlong, et al.
Publicado: (2015) -
Spatial Mutual Information Based Hyperspectral Band Selection for Classification
por: Amankwah, Anthony
Publicado: (2015) -
Band Selection for Dehazing Algorithms Applied to Hyperspectral Images in the Visible Range
por: Fernández-Carvelo, Sol, et al.
Publicado: (2021)