Cargando…
Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality
It is common knowledge that using different oxygen contents in the working gas during sputtering deposition results in fabrication of indium zinc oxide (IZO) films with a wide range of optoelectronic properties. It is also important that high deposition temperature is not required to achieve excelle...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223404/ https://www.ncbi.nlm.nih.gov/pubmed/37241367 http://dx.doi.org/10.3390/ma16103740 |
_version_ | 1785049933761478656 |
---|---|
author | Akhmedov, Akhmed K. Abduev, Aslan Kh. Murliev, Eldar K. Belyaev, Victor V. Asvarov, Abil Sh. |
author_facet | Akhmedov, Akhmed K. Abduev, Aslan Kh. Murliev, Eldar K. Belyaev, Victor V. Asvarov, Abil Sh. |
author_sort | Akhmedov, Akhmed K. |
collection | PubMed |
description | It is common knowledge that using different oxygen contents in the working gas during sputtering deposition results in fabrication of indium zinc oxide (IZO) films with a wide range of optoelectronic properties. It is also important that high deposition temperature is not required to achieve excellent transparent electrode quality in the IZO films. Modulation of the oxygen content in the working gas during RF sputtering of IZO ceramic targets was used to deposit IZO-based multilayers in which the ultrathin IZO unit layers with high electron mobility (μ-IZO) alternate with ones characterized by high concentration of free electrons (n-IZO). As a result of optimizing the thicknesses of each type of unit layer, low-temperature 400 nm thick IZO multilayers with excellent transparent electrode quality, indicated by the low sheet resistance (R ≤ 8 Ω/sq.) with high transmittance in the visible range ([Formula: see text] > 83%) and a very flat multilayer surface, were obtained. |
format | Online Article Text |
id | pubmed-10223404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102234042023-05-28 Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality Akhmedov, Akhmed K. Abduev, Aslan Kh. Murliev, Eldar K. Belyaev, Victor V. Asvarov, Abil Sh. Materials (Basel) Article It is common knowledge that using different oxygen contents in the working gas during sputtering deposition results in fabrication of indium zinc oxide (IZO) films with a wide range of optoelectronic properties. It is also important that high deposition temperature is not required to achieve excellent transparent electrode quality in the IZO films. Modulation of the oxygen content in the working gas during RF sputtering of IZO ceramic targets was used to deposit IZO-based multilayers in which the ultrathin IZO unit layers with high electron mobility (μ-IZO) alternate with ones characterized by high concentration of free electrons (n-IZO). As a result of optimizing the thicknesses of each type of unit layer, low-temperature 400 nm thick IZO multilayers with excellent transparent electrode quality, indicated by the low sheet resistance (R ≤ 8 Ω/sq.) with high transmittance in the visible range ([Formula: see text] > 83%) and a very flat multilayer surface, were obtained. MDPI 2023-05-15 /pmc/articles/PMC10223404/ /pubmed/37241367 http://dx.doi.org/10.3390/ma16103740 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Akhmedov, Akhmed K. Abduev, Aslan Kh. Murliev, Eldar K. Belyaev, Victor V. Asvarov, Abil Sh. Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title | Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title_full | Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title_fullStr | Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title_full_unstemmed | Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title_short | Transparent Conducting Amorphous IZO Thin Films: An Approach to Improve the Transparent Electrode Quality |
title_sort | transparent conducting amorphous izo thin films: an approach to improve the transparent electrode quality |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223404/ https://www.ncbi.nlm.nih.gov/pubmed/37241367 http://dx.doi.org/10.3390/ma16103740 |
work_keys_str_mv | AT akhmedovakhmedk transparentconductingamorphousizothinfilmsanapproachtoimprovethetransparentelectrodequality AT abduevaslankh transparentconductingamorphousizothinfilmsanapproachtoimprovethetransparentelectrodequality AT murlieveldark transparentconductingamorphousizothinfilmsanapproachtoimprovethetransparentelectrodequality AT belyaevvictorv transparentconductingamorphousizothinfilmsanapproachtoimprovethetransparentelectrodequality AT asvarovabilsh transparentconductingamorphousizothinfilmsanapproachtoimprovethetransparentelectrodequality |