Cargando…
Robust Human Face Emotion Classification Using Triplet-Loss-Based Deep CNN Features and SVM
Human facial emotion detection is one of the challenging tasks in computer vision. Owing to high inter-class variance, it is hard for machine learning models to predict facial emotions accurately. Moreover, a person with several facial emotions increases the diversity and complexity of classificatio...
Autores principales: | Haider, Irfan, Yang, Hyung-Jeong, Lee, Guee-Sang, Kim, Soo-Hyung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223619/ https://www.ncbi.nlm.nih.gov/pubmed/37430689 http://dx.doi.org/10.3390/s23104770 |
Ejemplares similares
-
A novel proposed CNN–SVM architecture for ECG scalograms classification
por: Ozaltin, Oznur, et al.
Publicado: (2022) -
Thermal–Visible Face Recognition Based on CNN Features and Triple Triplet Configuration for On-the-Move Identity Verification
por: Kowalski, Marcin, et al.
Publicado: (2022) -
Robust optimization of SVM hyperparameters in the classification of bioactive compounds
por: Czarnecki, Wojciech M, et al.
Publicado: (2015) -
Hybrid SVM-CNN Classification Technique for Human–Vehicle Targets in an Automotive LFMCW Radar †
por: Wu, Qisong, et al.
Publicado: (2020) -
EEG-Based Emotion Recognition by Convolutional Neural Network with Multi-Scale Kernels
por: Phan, Tran-Dac-Thinh, et al.
Publicado: (2021)