Cargando…
Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms
Anticipating and understanding cancers’ need for specific gene activities is key for novel therapeutic development. Here we utilized DepMap, a cancer gene dependency screen, to demonstrate that machine learning combined with network biology can produce robust algorithms that both predict what genes...
Autores principales: | Weiskittel, Taylor M., Cao, Andrew, Meng-Lin, Kevin, Lehmann, Zachary, Feng, Benjamin, Correia, Cristina, Zhang, Cheng, Wisniewski, Philip, Zhu, Shizhen, Yong Ung, Choong, Li, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223789/ https://www.ncbi.nlm.nih.gov/pubmed/37242535 http://dx.doi.org/10.3390/ph16050752 |
Ejemplares similares
-
Machine Learning and Systems Biology Approaches to Characterize Dosage-Based Gene Dependencies in Cancer Cells
por: Meng-Lin, Kevin, et al.
Publicado: (2021) -
The Trifecta of Single-Cell, Systems-Biology, and Machine-Learning Approaches
por: Weiskittel, Taylor M., et al.
Publicado: (2021) -
SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes
por: Meng-Lin, Kevin, et al.
Publicado: (2023) -
De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens
por: Weiskittel, Taylor M., et al.
Publicado: (2022) -
Manifold medicine: A schema that expands treatment dimensionality
por: Ung, Choong Yong, et al.
Publicado: (2021)