Cargando…

CNN-Based QR Code Reading of Package for Unmanned Aerial Vehicle

This paper plans to establish a warehouse management system based on an unmanned aerial vehicle (UAV) to scan the QR codes printed on packages. This UAV consists of a positive cross quadcopter drone and a variety of sensors and components, such as flight controllers, single-board computers, optical...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Szu-Yueh, Jan, Hsin-Che, Chen, Chun-Yu, Wang, Ming-Shyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223805/
https://www.ncbi.nlm.nih.gov/pubmed/37430619
http://dx.doi.org/10.3390/s23104707
Descripción
Sumario:This paper plans to establish a warehouse management system based on an unmanned aerial vehicle (UAV) to scan the QR codes printed on packages. This UAV consists of a positive cross quadcopter drone and a variety of sensors and components, such as flight controllers, single-board computers, optical flow sensors, ultrasonic sensors and cameras, etc. The UAV stabilizes itself by proportional-integral-derivative (PID) control and takes pictures of the package as it reaches ahead of the shelf. Through convolutional neural networks (CNNs), the placement angle of the package can be accurately identified. Some optimization functions are applied to compare system performance. When the angle is 90°, that is, the package is placed normally and correctly, the QR code will be read directly. Otherwise, image processing techniques that include Sobel edge computing, minimum circumscribed rectangle, perspective transformation, and image enhancement is required to assist in reading the QR code. The experimental results showed that the proposed algorithm provided good performance of a recognition rate of 94% for the stochastic gradient descent (SGD) and 95% for Adadelta optimization functions. After that, successful QR code reading was presented.