Cargando…

In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development

Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer’s disease and several psychiatric disorders. In this study, motivated by computation, we aimed to identify n...

Descripción completa

Detalles Bibliográficos
Autores principales: Emmerich, Thomas D., Hayes, Joseph M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223992/
https://www.ncbi.nlm.nih.gov/pubmed/37242443
http://dx.doi.org/10.3390/ph16050661
_version_ 1785050071429021696
author Emmerich, Thomas D.
Hayes, Joseph M.
author_facet Emmerich, Thomas D.
Hayes, Joseph M.
author_sort Emmerich, Thomas D.
collection PubMed
description Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer’s disease and several psychiatric disorders. In this study, motivated by computation, we aimed to identify novel ATP-binding site inhibitors of GSK-3 with CNS-active potential. A ligand screening (docking) protocol against GSK-3β was first optimized, employing an active/decoy benchmarking set, with the final protocol selected based on statistical performance analysis. The optimized protocol involved pre-filtering of ligands using a three-point 3D-pharmacophore, followed by Glide-SP docking applying hinge region hydrogen bonding constraints. Using this approach, the Biogenic subset of the ZINC15 compound database was screened, focused on compounds with potential for CNS-activity. Twelve compounds (generation I) were selected for experimental validation using in vitro GSK-3β binding assays. Two hit compounds, 1 and 2, with 6-amino-7H-benzo[e]perimidin-7-one and 1-(phenylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione type scaffolds were identified with IC(50) values of 1.63 µM and 20.55 µM, respectively. Ten analogues of 2 (generation II) were selected for structure activity relationship (SAR) analysis and revealed four low micromolar inhibitors (<10 µM), with 19 (IC(50) = 4.1 µM)~five times more potent than initial hit compound 2. Selectivity screening of low micromolar inhibitors 14 and 19 (comparing aryl- and alkyl-substituents) against 10 homologous kinases revealed unique selectivity profiles, with both compounds more potent against the GSK-3α isoform (IC(50)s~2 µM) and, additionally, inhibitors of PKBβ (IC(50)s < 25 µM). Compound 14 also inhibited ERK2 and 19, PKCγ, but generally good selectivity for GSK-3 isoforms over the other kinases was observed. The compounds had excellent predicted oral bioavailability and CNS-activity profiles, presenting promising candidates for future testing in cellular models of disease.
format Online
Article
Text
id pubmed-10223992
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102239922023-05-28 In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development Emmerich, Thomas D. Hayes, Joseph M. Pharmaceuticals (Basel) Article Glycogen synthase kinase-3 (GSK-3) isoforms α and β have diverse roles within cell biology, and have been linked with multiple diseases that include prominent CNS conditions such as Alzheimer’s disease and several psychiatric disorders. In this study, motivated by computation, we aimed to identify novel ATP-binding site inhibitors of GSK-3 with CNS-active potential. A ligand screening (docking) protocol against GSK-3β was first optimized, employing an active/decoy benchmarking set, with the final protocol selected based on statistical performance analysis. The optimized protocol involved pre-filtering of ligands using a three-point 3D-pharmacophore, followed by Glide-SP docking applying hinge region hydrogen bonding constraints. Using this approach, the Biogenic subset of the ZINC15 compound database was screened, focused on compounds with potential for CNS-activity. Twelve compounds (generation I) were selected for experimental validation using in vitro GSK-3β binding assays. Two hit compounds, 1 and 2, with 6-amino-7H-benzo[e]perimidin-7-one and 1-(phenylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione type scaffolds were identified with IC(50) values of 1.63 µM and 20.55 µM, respectively. Ten analogues of 2 (generation II) were selected for structure activity relationship (SAR) analysis and revealed four low micromolar inhibitors (<10 µM), with 19 (IC(50) = 4.1 µM)~five times more potent than initial hit compound 2. Selectivity screening of low micromolar inhibitors 14 and 19 (comparing aryl- and alkyl-substituents) against 10 homologous kinases revealed unique selectivity profiles, with both compounds more potent against the GSK-3α isoform (IC(50)s~2 µM) and, additionally, inhibitors of PKBβ (IC(50)s < 25 µM). Compound 14 also inhibited ERK2 and 19, PKCγ, but generally good selectivity for GSK-3 isoforms over the other kinases was observed. The compounds had excellent predicted oral bioavailability and CNS-activity profiles, presenting promising candidates for future testing in cellular models of disease. MDPI 2023-04-28 /pmc/articles/PMC10223992/ /pubmed/37242443 http://dx.doi.org/10.3390/ph16050661 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Emmerich, Thomas D.
Hayes, Joseph M.
In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title_full In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title_fullStr In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title_full_unstemmed In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title_short In Silico-Motivated Discovery of Novel Potent Glycogen Synthase-3 Inhibitors: 1-(Alkyl/arylamino)-3H-naphtho[1,2,3-de]quinoline-2,7-dione Identified as a Scaffold for Kinase Inhibitor Development
title_sort in silico-motivated discovery of novel potent glycogen synthase-3 inhibitors: 1-(alkyl/arylamino)-3h-naphtho[1,2,3-de]quinoline-2,7-dione identified as a scaffold for kinase inhibitor development
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10223992/
https://www.ncbi.nlm.nih.gov/pubmed/37242443
http://dx.doi.org/10.3390/ph16050661
work_keys_str_mv AT emmerichthomasd insilicomotivateddiscoveryofnovelpotentglycogensynthase3inhibitors1alkylarylamino3hnaphtho123dequinoline27dioneidentifiedasascaffoldforkinaseinhibitordevelopment
AT hayesjosephm insilicomotivateddiscoveryofnovelpotentglycogensynthase3inhibitors1alkylarylamino3hnaphtho123dequinoline27dioneidentifiedasascaffoldforkinaseinhibitordevelopment