Cargando…

Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester of Third-Generation-Based Electrospun Nanofiber as a Self-Powered Triboelectric Nanogenerator for Wearable Energy Harvesting and Health Monitoring Applications

Flexible pressure sensors have played an increasingly important role in the Internet of Things and human–machine interaction systems. For a sensor device to be commercially viable, it is essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene fluoride (PVD...

Descripción completa

Detalles Bibliográficos
Autores principales: Gunasekhar, Ramadasu, Sathiyanathan, Ponnan, Reza, Mohammad Shamim, Prasad, Gajula, Prabu, Arun Anand, Kim, Hongdoo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224140/
https://www.ncbi.nlm.nih.gov/pubmed/37242949
http://dx.doi.org/10.3390/polym15102375
Descripción
Sumario:Flexible pressure sensors have played an increasingly important role in the Internet of Things and human–machine interaction systems. For a sensor device to be commercially viable, it is essential to fabricate a sensor with higher sensitivity and lower power consumption. Polyvinylidene fluoride (PVDF)-based triboelectric nanogenerators (TENGs) prepared by electrospinning are widely used in self-powered electronics owing to their exceptional voltage generation performance and flexible nature. In the present study, aromatic hyperbranched polyester of the third generation (Ar.HBP-3) was added into PVDF as a filler (0, 10, 20, 30 and 40 wt.% w.r.t. PVDF content) to prepare nanofibers by electrospinning. The triboelectric performances (open-circuit voltage and short-circuit current) of PVDF-Ar.HBP-3/polyurethane (PU)-based TENG shows better performance than a PVDF/PU pair. Among the various wt.% of Ar.HBP-3, a 10 wt.% sample shows maximum output performances of 107 V which is almost 10 times that of neat PVDF (12 V); whereas, the current slightly increases from 0.5 μA to 1.3 μA. The self-powered TENG is also effective in measuring human motion. Overall, we have reported a simpler technique for producing high-performance TENG using morphological alteration of PVDF, which has the potential for use as mechanical energy harvesters and as effective power sources for wearable and portable electronic devices.