Cargando…

Favipiravir Suppresses Zika Virus (ZIKV) through Activity as a Mutagen

In a companion paper, we demonstrated that the nucleoside analogue favipiravir (FAV) suppressed Zika virus (ZIKV) replication in three human-derived cell lines—HeLa, SK-N-MC, and HUH-7. Our results revealed that FAV’s effect was most pronounced in HeLa cells. In this work, we aimed to explain variat...

Descripción completa

Detalles Bibliográficos
Autores principales: Franco, Evelyn J., Cella, Eleonora, Tao, Xun, Hanrahan, Kaley C., Azarian, Taj, Brown, Ashley N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224157/
https://www.ncbi.nlm.nih.gov/pubmed/37317316
http://dx.doi.org/10.3390/microorganisms11051342
Descripción
Sumario:In a companion paper, we demonstrated that the nucleoside analogue favipiravir (FAV) suppressed Zika virus (ZIKV) replication in three human-derived cell lines—HeLa, SK-N-MC, and HUH-7. Our results revealed that FAV’s effect was most pronounced in HeLa cells. In this work, we aimed to explain variation in FAV activity, investigating its mechanism of action and characterizing host cell factors relevant to tissue-specific differences in drug effect. Using viral genome sequencing, we show that FAV therapy was associated with an increase in the number of mutations and promoted the production of defective viral particles in all three cell lines. Our findings demonstrate that defective viral particles made up a larger portion of the viral population released from HeLa cells both at increasing FAV concentrations and at increasing exposure times. Taken together, our companion papers show that FAV acts via lethal mutagenesis against ZIKV and highlight the host cell’s influence on the activation and antiviral activity of nucleoside analogues. Furthermore, the information gleaned from these companion papers can be applied to gain a more comprehensive understanding of the activity of nucleoside analogues and the impact of host cell factors against other viral infections for which we currently have no approved antiviral therapies.