Cargando…
Generating Low-Earth Orbit Satellite Attitude Maneuver Profiles Using Deep Neural Networks
To perform Earth observations, low-Earth orbit (LEO) satellites require attitude maneuvers, which can be classified into two types: maintenance of a target-pointing attitude and maneuvering between target-pointing attitudes. The former depends on the observation target, while the latter has nonlinea...
Autor principal: | Yun, Seok-Teak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224180/ https://www.ncbi.nlm.nih.gov/pubmed/37430563 http://dx.doi.org/10.3390/s23104650 |
Ejemplares similares
-
Satellite mega-constellations create risks in Low Earth Orbit, the atmosphere and on Earth
por: Boley, Aaron C., et al.
Publicado: (2021) -
Intelligent Hierarchical Admission Control for Low-Earth Orbit Satellites Based on Deep Reinforcement Learning
por: Wei, Debin, et al.
Publicado: (2023) -
BeiDou Augmented Navigation from Low Earth Orbit Satellites
por: Su, Mudan, et al.
Publicado: (2019) -
An Optimized Method to Detect BDS Satellites’ Orbit Maneuvering and Anomalies in Real-Time
por: Huang, Guanwen, et al.
Publicado: (2018) -
An Autonomous Navigation Algorithm for High Orbit Satellite Using Star Sensor and Ultraviolet Earth Sensor
por: Baohua, Li, et al.
Publicado: (2013)