Cargando…
Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates
In filament wound composites, fiber bundles cross each other and form an undulating architecture, which may significantly affect the mechanical behavior of composites. In this study, the tensile mechanical behavior of filament wound laminates was studied experimentally and numerically, and the influ...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224266/ https://www.ncbi.nlm.nih.gov/pubmed/37241324 http://dx.doi.org/10.3390/ma16103697 |
_version_ | 1785050136450170880 |
---|---|
author | Liu, Hao Hu, Haixiao Cao, Dongfeng Ji, Yundong Wang, Xiangjiang Chen, Hongda Li, Shuxin |
author_facet | Liu, Hao Hu, Haixiao Cao, Dongfeng Ji, Yundong Wang, Xiangjiang Chen, Hongda Li, Shuxin |
author_sort | Liu, Hao |
collection | PubMed |
description | In filament wound composites, fiber bundles cross each other and form an undulating architecture, which may significantly affect the mechanical behavior of composites. In this study, the tensile mechanical behavior of filament wound laminates was studied experimentally and numerically, and the influences of the bundle thickness and winding angle on the mechanical behavior of the filament wound plates were also explored. In the experiments, tensile tests were carried out on filament wound plates and laminated plates. It was found that, compared to laminated plates, filament wound plates had lower stiffness, greater failure displacement, similar failure loads, and more obvious strain concentration areas. In numerical analysis, mesoscale finite element models, which take into account the fiber bundles’ undulating morphology, were created. The numerical predictions correlated well with the experimental ones. Further numerical studies have shown that the stiffness reduction coefficient of filament wound plates with a winding angle of ±55° decreased from 0.78 to 0.74 as the bundle thickness increased from 0.4 mm to 0.8 mm. The stiffness reduction coefficients of filament wound plates with wound angles of ±15°, ±25°, and ±45° were 0.86, 0.83, and 0.8, respectively. |
format | Online Article Text |
id | pubmed-10224266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102242662023-05-28 Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates Liu, Hao Hu, Haixiao Cao, Dongfeng Ji, Yundong Wang, Xiangjiang Chen, Hongda Li, Shuxin Materials (Basel) Article In filament wound composites, fiber bundles cross each other and form an undulating architecture, which may significantly affect the mechanical behavior of composites. In this study, the tensile mechanical behavior of filament wound laminates was studied experimentally and numerically, and the influences of the bundle thickness and winding angle on the mechanical behavior of the filament wound plates were also explored. In the experiments, tensile tests were carried out on filament wound plates and laminated plates. It was found that, compared to laminated plates, filament wound plates had lower stiffness, greater failure displacement, similar failure loads, and more obvious strain concentration areas. In numerical analysis, mesoscale finite element models, which take into account the fiber bundles’ undulating morphology, were created. The numerical predictions correlated well with the experimental ones. Further numerical studies have shown that the stiffness reduction coefficient of filament wound plates with a winding angle of ±55° decreased from 0.78 to 0.74 as the bundle thickness increased from 0.4 mm to 0.8 mm. The stiffness reduction coefficients of filament wound plates with wound angles of ±15°, ±25°, and ±45° were 0.86, 0.83, and 0.8, respectively. MDPI 2023-05-12 /pmc/articles/PMC10224266/ /pubmed/37241324 http://dx.doi.org/10.3390/ma16103697 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Liu, Hao Hu, Haixiao Cao, Dongfeng Ji, Yundong Wang, Xiangjiang Chen, Hongda Li, Shuxin Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title | Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title_full | Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title_fullStr | Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title_full_unstemmed | Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title_short | Investigation on the Influence of Fiber Bundle Undulating Architecture on Tensile Behavior of Filament Wound Composite Laminates |
title_sort | investigation on the influence of fiber bundle undulating architecture on tensile behavior of filament wound composite laminates |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224266/ https://www.ncbi.nlm.nih.gov/pubmed/37241324 http://dx.doi.org/10.3390/ma16103697 |
work_keys_str_mv | AT liuhao investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT huhaixiao investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT caodongfeng investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT jiyundong investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT wangxiangjiang investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT chenhongda investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates AT lishuxin investigationontheinfluenceoffiberbundleundulatingarchitectureontensilebehavioroffilamentwoundcompositelaminates |