Cargando…
Influence of Repair Welding on the Fatigue Behavior of S355J2 T-Joints
This paper investigated the effect of repair welding on the microstructure, mechanical properties, and high cycle fatigue properties of S355J2 steel T-joints in orthotropic bridge decks. The test results found that the increase in grain size of the coarse, heat-affected zone decreased the hardness o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224267/ https://www.ncbi.nlm.nih.gov/pubmed/37241308 http://dx.doi.org/10.3390/ma16103682 |
Sumario: | This paper investigated the effect of repair welding on the microstructure, mechanical properties, and high cycle fatigue properties of S355J2 steel T-joints in orthotropic bridge decks. The test results found that the increase in grain size of the coarse, heat-affected zone decreased the hardness of the welded joint by about 30 HV. The tensile strength of the repair-welded joints was reduced by 20 MPa compared to the welded joints. For the high cycle fatigue behavior, the fatigue life of repair-welded joints is lower than that of the welded joints under the same dynamic load. The fracture positions of toe repair-welded joints were all at the weld root, while the fracture positions of the deck repair-welded joints were at the weld toe and weld root, with the same proportion. The fatigue life of toe repair-welded joints is reduced more than that of deck repair-welded joints. The traction structural stress method was used to analyze fatigue data of the welded and repair-welded joints, and the influence of angular misalignment on was considered. The fatigue data with and without AM are all within the ±95% confidence interval of the master S-N curve. |
---|