Cargando…
Dynamic Image Difficulty-Aware DNN Pruning
Deep Neural Networks (DNNs) have achieved impressive performance in various image recognition tasks, but their large model sizes make them challenging to deploy on resource-constrained devices. In this paper, we propose a dynamic DNN pruning approach that takes into account the difficulty of the inc...
Autores principales: | Pentsos, Vasileios, Spantidi, Ourania, Anagnostopoulos, Iraklis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224338/ https://www.ncbi.nlm.nih.gov/pubmed/37241531 http://dx.doi.org/10.3390/mi14050908 |
Ejemplares similares
-
Coded DNN Watermark: Robustness against Pruning Models Using Constant Weight Code
por: Yasui, Tatsuya, et al.
Publicado: (2022) -
Systematic Generation of Diverse Benchmarks for DNN Verification
por: Xu, Dong, et al.
Publicado: (2020) -
Resource-constrained FPGA/DNN co-design
por: Zhang, Zhichao, et al.
Publicado: (2021) -
DNN based reliability evaluation for telemedicine data
por: Shin, Dong Ah, et al.
Publicado: (2022) -
DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System
por: Mao, Yingchi, et al.
Publicado: (2019)