Cargando…
Enhancing Safety and Efficiency in Firefighting Operations via Deep Learning and Temperature Forecasting Modeling in Autonomous Unit †
Firefighters face numerous challenges when entering burning structures to rescue trapped victims, assess the conditions of a residential structure, and extinguish the fire as quickly as possible. These challenges include extreme temperatures, smoke, toxic gases, explosions, and falling objects, whic...
Autores principales: | Ishola, Adenrele A., Valles, Damian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224561/ https://www.ncbi.nlm.nih.gov/pubmed/37430542 http://dx.doi.org/10.3390/s23104628 |
Ejemplares similares
-
Physiological Responses to Firefighting in Extreme Temperatures Do Not Compare to Firefighting in Temperate Conditions
por: Windisch, Stephanie, et al.
Publicado: (2017) -
Deep Tower Networks for Efficient Temperature Forecasting from Multiple Data Sources
por: Eide, Siri S., et al.
Publicado: (2022) -
Fortune Telling or Physics Prediction? Deep Learning for On-Line Kicker Temperature Forecasting
por: Velotti, Francesco, et al.
Publicado: (2022) -
Firefighter Drill at the Safety Training Centre
por: Balle, Christoph
Publicado: (2014) -
Safety Training Course: Electrical Authorisation - Firefighters
por: Balle, Christoph
Publicado: (2016)