Cargando…
Generating synthetic mixed-type longitudinal electronic health records for artificial intelligent applications
The recent availability of electronic health records (EHRs) have provided enormous opportunities to develop artificial intelligence (AI) algorithms. However, patient privacy has become a major concern that limits data sharing across hospital settings and subsequently hinders the advances in AI. Synt...
Autores principales: | Li, Jin, Cairns, Benjamin J., Li, Jingsong, Zhu, Tingting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224668/ https://www.ncbi.nlm.nih.gov/pubmed/37244963 http://dx.doi.org/10.1038/s41746-023-00834-7 |
Ejemplares similares
-
Applications of Artificial Intelligence to Electronic Health Record Data in Ophthalmology
por: Lin, Wei-Chun, et al.
Publicado: (2020) -
Prospect of Artificial Intelligence Based on Electronic Medical Record
por: Lee, Suehyun, et al.
Publicado: (2021) -
Research and Application of Artificial Intelligence Based on Electronic Health Records of Patients With Cancer: Systematic Review
por: Yang, Xinyu, et al.
Publicado: (2022) -
Impact of Applicability
Domains to Generative Artificial
Intelligence
por: Langevin, Maxime, et al.
Publicado: (2023) -
Synthetic electronic health records generated with variational graph autoencoders
por: Nikolentzos, Giannis, et al.
Publicado: (2023)